Journal List > J Korean Acad Prosthodont > v.55(1) > 1034913

J Korean Acad Prosthodont. 2017 Jan;55(1):100-110. Korean.
Published online Jan 25, 2017.  https://doi.org/10.4047/jkap.2017.55.1.100
© 2017 The Korean Academy of Prosthodontics
Study on application to the field of dentistry using optical coherence tomography (OCT)
Se-Wook Pyo,1 Young-Joon Lim,1 Won-Jin Lee,2 and Jun-Jae Lee1
1Department of Prosthodontics, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
2Department of Oral and Maxillofacial Radiology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

Corresponding Author: Jun-Jae Lee. Department of Prosthodontics, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea. +82 (0)2 2072 2940: Email: jazzyguts@gmail.com
Received July 11, 2016; Revised September 07, 2016; Accepted September 09, 2016.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


Abstract

Purpose

This paper describes the basic principles and the feasibility of the field of dental diagnosis of optical coherence tomography (OCT) used in diverse field of medical diagnosis.

Materials and methods

In this review, the research data of OCT were searched from PubMed, medical journal and related papers.

Results

Generally, OCT is non-invasive and is possible to secure an excellent spatial resolution and real-time images of biological microstructure.

Conclusion

This review discusses not only the basic principles of operation, types, advantages, disadvantages of OCT but also the future applications of OCT technology and their potential in the field of dental diagnosis.

Keywords: Optical coherence tomography (OCT); Oral diagnosis; Dental imaging

Figures


Fig. 1
The principle of the Michelson interferometer.
Click for larger image


Fig. 2
The principle of confocal microscopy.
Click for larger image


Fig. 3
Comparison of resolution and tissue penetration depth with OCT and other medical imaging equipment. (Data source: OCT supports industrial nondestructive depth analysis. Laser Focus World. 2011.8).10
Click for larger image


Fig. 4
The schematics of (A) TD-OCT and (B) FD-OCT.
Click for larger image


Fig. 5
Block diagrams of the OCT methods with the use of Fourier-domain detection. (A) Spectral OCT, (B) Swept source OCT.
Click for larger image


Fig. 6
Image obtained from a distinct enamel crack. (A) A photo examination of the enamel crack using transillumination(arrow) in which SS-OCT scanning was performed along the red line. (B) An SS-OCT image along the red line in (A). (Image courtesy of Korea Photonics Technology Institute).
Click for larger image


Fig. 7
Marginal image of zirconia core and teeth by using OCT (coping: zirconia core, die: plaster cast, gap: marginal fidelity, surface: surface of zirconia core), (with permission from J Korean Content Soc40).
Click for larger image


Fig. 8
Measurement of marginal fit between implant and abutment using 3-D OCT. (A) OCT image of the control which was tightened without stainless steel plates with three-dimensional (3-D) OCT image. (B) The sample in (a) overlaid with porcine gingiva (GN). Implant surface is in a close proximity to the GN. (C) Increased signal intensity at the implant-abutment interface corresponds to gap between an implant and an abutment in OCT image (arrows). The length of this line indicates GS. The bottom image is a 3-D OCT scan. (D) Porcine tissue covering the implant-abutment interface. The gap (arrows) can be clearly observed in this sample (with permission from J Biomed Opt45).
Click for larger image

Tables


Table 1
Comparison of the dental OCT and other medical imaging equipment
Click for larger image


Table 2
Medical applications and contents of OCT
Click for larger image


Table 3
Feature comparison of SD-OCT vs SS-OCT
Click for larger image


Table 4
Types and principles of OCT by image representation
Click for larger image

Notes

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2015M3A9E2067369).

References
1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science 1991;254:1178–1181.
2. Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, Weyman AE, Swanson EA, Southern JF, Fujimoto JG. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 1997;77:397–403.
3. Wang Y, Bower BA, Izatt JA, Tan O, Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 2008;13:064003.
4. Poneros JM, Brand S, Bouma BE, Tearney GJ, Compton CC, Nishioka NS. Diagnosis of specialized intestinal metaplasia by optical coherence tomography. Gastroenterology 2001;120:7–12.
5. Pierce MC, Strasswimmer J, Hyle Park B, Cense B, De Boer JF. Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt 2004;9:287–291.
6. Colston BW, Sathyam Jr US, Dasilva LB, Everett MJ. Dental OCT. Opt Express 1998;3:230–238.
7. Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 1998;37:3582–3585.
8. Optical Coherence Tomography 2010: Technology, Applications and Markets. Strategies Unlimited; 2010.
9. Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003;11:889–894.
10. OCT supports industrial nondestructive depth analysis. Laser Focus World; 2011 Aug.
11. Hsieh YS, Ho YC, Lee SY, Chuang CC, Tsai JC, Lin KF, Sun CW. Dental optical coherence tomography. Sensors (Basel) 2013;13:8928–8949.
12. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys 2003;66:239–303.
13. Wojtkowski M. High-speed optical coherence tomography: basics and applications. Appl Opt 2010;49:D30–D61.
14. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R. Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 2010;18:14685–14704.
15. Strasswimmer J, Pierce MC, Park BH, Neel V, de Boer JF. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 2004;9:292–298.
16. Sakai S, Yamanari M, Lim Y, Nakagawa N, Yasuno Y. In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography. Biomed Opt Express 2011;2:2623–2631.
17. Yazdanfar S, Rollins AM, Izatt JA. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol 2003;121:235–239.
18. Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239–250.
19. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt 1999;38:2092–2096.
20. Otis LL, Everett MJ, Sathyam US, Colston BW Jr. Optical coherence tomography: a new imaging technology for dentistry. J Am Dent Assoc 2000;131:511–514.
21. Warren JA, Gelikonov GV, Gelikonov VM, Feldchtein FI, Beach NM, Moores MD, Reitze DH. Imaging and characterization of dental structure using optical coherence tomography; Proceedings of Lasers Electro-Optics, CLEO; 3–8 May 1998; San Francisco, CA, USA.
22. Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod 2012;38:1269–1274.
23. Ishibashi K, Ozawa N, Tagami J, Sumi Y. Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations. J Dent 2011;39:543–548.
24. Braz AK, Kyotoku BB, Gomes AS. In vitro tomographic image of human pulp-dentin complex: optical coherence tomography and histology. J Endod 2009;35:1218–1221.
25. Baumgartner A, Hitzenberger CK, Dichtl S, Sattmann H, Moritz A, Sperr W, Fercher AF. Optical coherence tomography of dental structures. Lasers in Dent 1998;3248:130–136.
26. Fried D, Xie J, Shafi S, Featherstone JD, Breunig TM, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 2002;7:618–627.
27. Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg Med 2010;42:62–68.
28. Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater 2009;25:721–728.
29. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med 2009;41:208–213.
30. Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Appl Opt 2005;44:2041–2048.
31. Louie T, Lee C, Hsu D, Hirasuna K, Manesh S, Staninec M, Darling CL, Fried D. Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg Med 2010;42:738–745.
32. Fried D, Staninec M, Darling C, Kang H, Chan K. Monitoring tooth demineralization using a cross polarization optical coherence tomographic system with an integrated MEMS scanner. Proc SPIE Int Soc Opt Eng 2012:8208.
33. Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009;135:252–259.
34. Hsieh YS, Ho YC, Lee SY, Lu CW, Jiang CP, Chuang CC, Wang CY, Sun CW. Subgingival calculus imaging based on swept-source optical coherence tomography. J Biomed Opt 2011;16:071409.
35. Wilder-Smith P, Jung WG, Brenner M, Osann K, Beydoun H, Messadi D, Chen Z. In vivo optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg Med 2004;35:269–275.
36. Jung W, Zhang J, Chung J, Wilder-Smith P, Brenner M, Nelson JS, Chen Z. Advances in oral cancer detection using optical coherence tomography. IEEE JOST in Quantum Electronics 2005;11:811–817.
37. Kim CS, Wilder-Smith P, Ahn YC, Liaw LH, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt 2009;14:034008.
38. Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 2009;14:044028.
39. Lee CK, Tsai MT, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Diagnosis of oral submucous fibrosis with optical coherence tomography. J Biomed Opt 2009;14:054008.
40. Kim JH, Kim KB. Analysis of the marginal and internal fit of dental zirconia core using optical coherence tomography (OCT). J Korea Contents Assoc 2012;12:240–247.
41. Di Stasio D, Lauritano D, Romano A, Salerno C, Minervini G, Gentile E, Serpico R, Lucchese A. In vivo Characterization of oral pemphigus vulgaris by optical coherence tomography. J Biol Regul Homeost Agents 2015;29 3 Suppl 1:39–41.
42. Iino Y, Ebihara A, Yoshioka T, Kawamura J, Watanabe S, Hanada T, Nakano K, Sumi Y, Suda H. Detection of a second mesiobuccal canal in maxillary molars by swept-source optical coherence tomography. J Endod 2014;40:1865–1868.
43. Lin CL, Kuo WC, Yu JJ, Huang SF. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography. Dent Mater 2013;29:382–388.
44. Lin CL, Kuo WC, Chang YH, Yu JJ, Lin YC. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography. Dent Mater 2014;30:910–916.
45. Kikuchi K, Akiba N, Sadr A, Sumi Y, Tagami J, Minakuchi S. Evaluation of the marginal fit at implant-abutment interface by optical coherence tomography. J Biomed Opt 2014;19:055002.
TOOLS
ORCID iDs

Jun-Jae Lee
https://orcid.org/http://orcid.org/0000-0002-5496-0168

Similar articles

The effectiveness of optical coherence tomography for evaluating peri-implant tissue: A pilot study

Visualization of Peripheral Pulmonary Artery Red Thrombi Utilizing Optical Coherence Tomography

Early caries detection using optical coherence tomography: a review of the literature

Utility of Optical Coherence Tomography to Assess a Hazy Intracoronary Image after Percutaneous Coronary Intervention

Optical Coherence Tomographic Finding in a Case of Macular Coloboma