2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68:394–424. DOI:
10.3322/caac.21492. PMID:
30207593.
3. Cirocchi R, Trastulli S, Boselli C, Montedori A, Cavaliere D, Parisi A, et al. Radiofrequency ablation in the treatment of liver metastases from colorectal cancer. Cochrane Database Syst Rev. 2012; (6):CD006317. DOI:
10.1002/14651858.CD006317.pub3. PMID:
22696357.
4. Alberts SR, Gores GJ, Kim GP, Roberts LR, Kendrick ML, Rosen CB, et al. 2007; Treatment options for hepatobiliary and pancreatic cancer. Mayo Clin Proc. 82:628–637. DOI:
10.4065/82.5.628. PMID:
17493429.
6. Royston P, Moons KG, Altman DG, Vergouwe Y. 2009; Prognosis and prognostic research: developing a prognostic model. BMJ. 338:b604. DOI:
10.1136/bmj.b604. PMID:
19336487.
8. Barnett S, Moonesinghe SR. 2011; Clinical risk scores to guide perioperative management. Postgrad Med J. 87:535–541. DOI:
10.1136/pgmj.2010.107169. PMID:
21257993.
9. Knops AM, Legemate DA, Goossens A, Bossuyt PM, Ubbink DT. 2013; Decision aids for patients facing a surgical treatment decision: a systematic review and meta-analysis. Ann Surg. 257:860–866. DOI:
10.1097/SLA.0b013e3182864fd6. PMID:
23470574.
10. Chandra A, Mangam S, Marzouk D. 2009; A review of risk scoring systems utilised in patients undergoing gastrointestinal surgery. J Gastrointest Surg. 13:1529–1538. DOI:
10.1007/s11605-009-0857-z. PMID:
19319612.
11. Riley RD, Ensor J, Snell KI, Debray TP, Altman DG, Moons KG, et al. 2016; External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. 353:i3140. DOI:
10.1136/bmj.i3140. PMID:
27334381. PMCID:
PMC4916924.
12. Moons KG, Altman DG, Vergouwe Y, Royston P. 2009; Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 338:b606. DOI:
10.1136/bmj.b606. PMID:
19502216.
14. Bellou V, Belbasis L, Konstantinidis AK, Tzoulaki I, Evangelou E. 2019; Prognostic models for outcome prediction in patients with chronic obstructive pulmonary disease: systematic review and critical appraisal. BMJ. 367:l5358. DOI:
10.1136/bmj.l5358. PMID:
31585960. PMCID:
PMC6776831.
15. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. 2020; Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 369:m1328. DOI:
10.1136/bmj.m1328. PMID:
32265220. PMCID:
PMC7222643.
16. Caetano SJ, Sonpavde G, Pond GR. 2018; C-statistic: a brief explanation of its construction, interpretation and limitations. Eur J Cancer. 90:130–132. DOI:
10.1016/j.ejca.2017.10.027. PMID:
29221899.
17. Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. 2011; Risk prediction models for hospital readmission: a systematic review. JAMA. 306:1688–1698. DOI:
10.1001/jama.2011.1515. PMID:
22009101. PMCID:
PMC3603349.
18. Yurkovich M, Avina-Zubieta JA, Thomas J, Gorenchtein M, Lacaille D. 2015; A systematic review identifies valid comorbidity indices derived from administrative health data. J Clin Epidemiol. 68:3–14. DOI:
10.1016/j.jclinepi.2014.09.010. PMID:
25441702.
19. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW. 2019; Calibration: the Achilles heel of predictive analytics. BMC Med. 17:230. DOI:
10.1186/s12916-019-1466-7. PMID:
31842878. PMCID:
PMC6912996.
20. Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, et al. 2018; Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 29(Suppl 4):iv238–iv255. DOI:
10.1093/annonc/mdy308. PMID:
30285213.
21. European Association for the Study of the Liver. 2018; EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 69:182–236. DOI:
10.1016/j.jhep.2018.03.019. PMID:
29628281.
22. The Cancer of the Liver Italian Program (Clip) Investigators. 1998; A new prognostic system for hepatocellular carcinoma: a retrospective study of 435 patients: the Cancer of the Liver Italian Program (CLIP) investigators. Hepatology. 28:751–755. DOI:
10.1002/hep.510280322. PMID:
9731568.
23. Kudo M, Chung H, Osaki Y. 2003; Prognostic staging system for hepatocellular carcinoma (CLIP score): its value and limitations, and a proposal for a new staging system, the Japan Integrated Staging Score (JIS score). J Gastroenterol. 38:207–215. DOI:
10.1007/s005350300038. PMID:
12673442.
24. Kinoshita A, Onoda H, Fushiya N, Koike K, Nishino H, Tajiri H. 2015; Staging systems for hepatocellular carcinoma: current status and future perspectives. World J Hepatol. 7:406–424. DOI:
10.4254/wjh.v7.i3.406. PMID:
25848467. PMCID:
PMC4381166.
25. Llovet JM, Bruix J. 2000; Prospective validation of the Cancer of the Liver Italian Program (CLIP) score: a new prognostic system for patients with cirrhosis and hepatocellular carcinoma. Hepatology. 32:679–680. DOI:
10.1053/jhep.2000.16475. PMID:
10991637.
26. Chen ZH, Hong YF, Lin J, Li X, Wu DH, Wen JY, et al. 2017; Validation and ranking of seven staging systems of hepatocellular carcinoma. Oncol Lett. 14:705–714. DOI:
10.3892/ol.2017.6222. PMID:
28693224. PMCID:
PMC5494763.
27. Liu PH, Hsu CY, Hsia CY, Lee YH, Su CW, Huang YH, et al. 2016; Prognosis of hepatocellular carcinoma: assessment of eleven staging systems. J Hepatol. 64:601–608. DOI:
10.1016/j.jhep.2015.10.029. PMID:
26551516.
28. Huitzil-Melendez FD, Capanu M, O'Reilly EM, Duffy A, Gansukh B, Saltz LL, et al. 2010; Advanced hepatocellular carcinoma: which staging systems best predict prognosis? J Clin Oncol. 28:2889–2895. DOI:
10.1200/JCO.2009.25.9895. PMID:
20458042. PMCID:
PMC3651603.
29. Ueno S, Tanabe G, Sako K, Hiwaki T, Hokotate H, Fukukura Y, et al. 2001; Discrimination value of the new western prognostic system (CLIP score) for hepatocellular carcinoma in 662 Japanese patients. Cancer of the Liver Italian Program. Hepatology. 34:529–534. DOI:
10.1053/jhep.2001.27219. PMID:
11526539.
30. Levy I, Sherman M. 2002; Staging of hepatocellular carcinoma: assessment of the CLIP, Okuda, and Child-Pugh staging systems in a cohort of 257 patients in Toronto. Gut. 50:881–885. DOI:
10.1136/gut.50.6.881. PMID:
12010894. PMCID:
PMC1773247.
31. Huo TI, Huang YH, Lin HC, Wu JC, Chiang JH, Lee PC, et al. 2006; Proposal of a modified Cancer of the Liver Italian Program staging system based on the model for end-stage liver disease for patients with hepatocellular carcinoma undergoing loco-regional therapy. Am J Gastroenterol. 101:975–982. DOI:
10.1111/j.1572-0241.2006.00462.x. PMID:
16573785.
32. Nanashima A, Morino S, Yamaguchi H, Tanaka K, Shibasaki S, Tsuji T, et al. 2003; Modified CLIP using PIVKA-II for evaluating prognosis after hepatectomy for hepatocellular carcinoma. Eur J Surg Oncol. 29:735–742. DOI:
10.1016/j.ejso.2003.08.007. PMID:
14602492.
33. Llovet JM, Brú C, Bruix J. 1999; Prognosis of hepatocellular carcinoma: the BCLC staging classification. Semin Liver Dis. 19:329–338. DOI:
10.1055/s-2007-1007122. PMID:
10518312.
36. Vitale A, Saracino E, Boccagni P, Brolese A, D'Amico F, Gringeri E, et al. 2009; Validation of the BCLC prognostic system in surgical hepatocellular cancer patients. Transplant Proc. 41:1260–1263. DOI:
10.1016/j.transproceed.2009.03.054. PMID:
19460533.
37. Barman PM, Sharma P, Krishnamurthy V, Willatt J, McCurdy H, Moseley RH, et al. 2014; Predictors of mortality in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Dig Dis Sci. 59:2821–2825. DOI:
10.1007/s10620-014-3247-7. PMID:
24973040. PMCID:
PMC4359914.
38. Barman PM, Su GL. 2016; Limitations of the barcelona clinic liver cancer staging system with a focus on transarterial chemoembolization as a key modality for treatment of hepatocellular carcinoma. Clin Liver Dis (Hoboken). 7:32–35. DOI:
10.1002/cld.530. PMID:
31041024. PMCID:
PMC6490251.
39. Wang YY, Zhong JH, Xu HF, Xu G, Wang LJ, Xu D, et al. 2019; A modified staging of early and intermediate hepatocellular carcinoma based on single tumour >7 cm and multiple tumours beyond up-to-seven criteria. Aliment Pharmacol Ther. 49:202–210. DOI:
10.1111/apt.15074. PMID:
30506713.
40. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T, et al. 1993; Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med. 328:1797–1801. DOI:
10.1056/NEJM199306243282501. PMID:
7684822.
41. El-Serag HB, Rudolph KL. 2007; Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 132:2557–2576. DOI:
10.1053/j.gastro.2007.04.061. PMID:
17570226.
43. Johnson P, Berhane S, Satomura S, Tada T, Kumada T, Teng M, et al. 2014; O110 An international collaborative study assessing the role of aetiology and stage in survival in HCC-implications for screening. J Hepatol. 60:S45–S46. DOI:
10.1016/S0168-8278(14)60112-4.
44. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. 2015; Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 33:550–558. DOI:
10.1200/JCO.2014.57.9151. PMID:
25512453. PMCID:
PMC4322258.
45. Pinato DJ, Sharma R, Allara E, Yen C, Arizumi T, Kubota K, et al. 2017; The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J Hepatol. 66:338–346. DOI:
10.1016/j.jhep.2016.09.008. PMID:
27677714.
46. Toyoda H, Lai PB, O'Beirne J, Chong CC, Berhane S, Reeves H, et al. 2016; Long-term impact of liver function on curative therapy for hepatocellular carcinoma: application of the ALBI grade. Br J Cancer. 114:744–750. DOI:
10.1038/bjc.2016.33. PMID:
27022825. PMCID:
PMC4984858.
47. Cho WR, Hung CH, Chen CH, Lin CC, Wang CC, Liu YW, et al. 2020; Ability of the post-operative ALBI grade to predict the outcomes of hepatocellular carcinoma after curative surgery. Sci Rep. 10:7290. DOI:
10.1038/s41598-020-64354-0. PMID:
32350365. PMCID:
PMC7190718.
48. Hiraoka A, Kumada T, Tsuji K, Takaguchi K, Itobayashi E, Kariyama K, et al. 2019; Validation of modified ALBI grade for more detailed assessment of hepatic function in hepatocellular carcinoma patients: a multicenter analysis. Liver Cancer. 8:121–129. DOI:
10.1159/000488778. PMID:
31019902. PMCID:
PMC6465715.
49. Clavien PA, Lesurtel M, Bossuyt PM, Gores GJ, Langer B, Perrier A. 2012; Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol. 13:e11–e22. DOI:
10.1016/S1470-2045(11)70175-9. PMID:
22047762. PMCID:
PMC3417764.
50. Lingiah VA, Niazi M, Olivo R, Paterno F, Guarrera JV, Pyrsopoulos NT. 2020; Liver transplantation beyond milan criteria. J Clin Transl Hepatol. 8:69–75. DOI:
10.14218/JCTH.2019.00050. PMID:
32274347. PMCID:
PMC7132012.
51. Mehta N, Heimbach J, Harnois DM, Sapisochin G, Dodge JL, Lee D, et al. 2017; Validation of a risk estimation of tumor recurrence after transplant (RETREAT) score for hepatocellular carcinoma recurrence after liver transplant. JAMA Oncol. 3:493–500. DOI:
10.1001/jamaoncol.2016.5116. PMID:
27838698. PMCID:
PMC5395317.
52. Hoffman D, Mehta N. 2021; Recurrence of hepatocellular carcinoma following liver transplantation. Expert Rev Gastroenterol Hepatol. 15:91–102. DOI:
10.1080/17474124.2021.1823213. PMID:
32933351.
53. Lee DD, Sapisochin G, Mehta N, Gorgen A, Musto KR, Hajda H, et al. 2020; Surveillance for HCC after liver transplantation: increased monitoring may yield aggressive treatment options and improved postrecurrence survival. Transplantation. 104:2105–2112. DOI:
10.1097/TP.0000000000003117. PMID:
31972705.
54. Mehta N, Dodge JL, Roberts JP, Yao FY. 2018; Validation of the prognostic power of the RETREAT score for hepatocellular carcinoma recurrence using the UNOS database. Am J Transplant. 18:1206–1213. DOI:
10.1111/ajt.14549. PMID:
29068145. PMCID:
PMC6445634.
55. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. 2018; Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 68:723–750. DOI:
10.1002/hep.29913. PMID:
29624699.
56. Agopian VG, Harlander-Locke M, Zarrinpar A, Kaldas FM, Farmer DG, Yersiz H, et al. 2015; A novel prognostic nomogram accurately predicts hepatocellular carcinoma recurrence after liver transplantation: analysis of 865 consecutive liver transplant recipients. J Am Coll Surg. 220:416–427. DOI:
10.1016/j.jamcollsurg.2014.12.025. PMID:
25690672.
57. Halazun KJ, Najjar M, Abdelmessih RM, Samstein B, Griesemer AD, Guarrera JV, et al. 2017; Recurrence after liver transplantation for hepatocellular carcinoma: a new MORAL to the story. Ann Surg. 265:557–564. DOI:
10.1097/SLA.0000000000001966. PMID:
27611615.
58. Kim SH, Moon DB, Park GC, Lee SG, Hwang S, Ahn CS, et al. 2021; Preoperative prediction score of hepatocellular carcinoma recurrence in living donor liver transplantation: validation of SNAPP score developed at Asan Medical Center. Am J Transplant. 21:604–613. DOI:
10.1111/ajt.16227.
59. Creasy JM, Sadot E, Koerkamp BG, Chou JF, Gonen M, Kemeny NE, et al. 2018; Actual 10-year survival after hepatic resection of colorectal liver metastases: what factors preclude cure? Surgery. 163:1238–1244. DOI:
10.1016/j.surg.2018.01.004. PMID:
29455841. PMCID:
PMC7439273.
60. de Jong MC, Pulitano C, Ribero D, Strub J, Mentha G, Schulick RD, et al. 2009; Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg. 250:440–448. DOI:
10.1097/SLA.0b013e3181b4539b. PMID:
19730175.
61. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. 1999; Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 230:309–318. discussion 318–321. DOI:
10.1097/00000658-199909000-00004. PMID:
10493478. PMCID:
PMC1420876.
62. He Y, Ong Y, Li X, Din FV, Brown E, Timofeeva M, et al. 2019; Performance of prediction models on survival outcomes of colorectal cancer with surgical resection: a systematic review and meta-analysis. Surg Oncol. 29:196–202. DOI:
10.1016/j.suronc.2019.05.014. PMID:
31196488.
63. Spelt L, Nilsson J, Andersson R, Andersson B. 2013; Artificial neural networks--a method for prediction of survival following liver resection for colorectal cancer metastases. Eur J Surg Oncol. 39:648–654. DOI:
10.1016/j.ejso.2013.02.024. PMID:
23514791.
65. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. 2017; Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3:1335–1342. DOI:
10.1001/jamaoncol.2017.0589. PMID:
28448665. PMCID:
PMC5824320.
66. Falconi M, Eriksson B, Kaltsas G, Bartsch DK, Capdevila J, Caplin M, et al. 2016; ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology. 103:153–171. DOI:
10.1159/000443171. PMID:
26742109. PMCID:
PMC4849884.
67. Vagefi PA, Razo O, Deshpande V, McGrath DJ, Lauwers GY, Thayer SP, et al. 2007; Evolving patterns in the detection and outcomes of pancreatic neuroendocrine neoplasms: the Massachusetts General Hospital experience from 1977 to 2005. Arch Surg. 142:347–354. DOI:
10.1001/archsurg.142.4.347. PMID:
17438169. PMCID:
PMC3979851.
68. Bar-Moshe Y, Mazeh H, Grozinsky-Glasberg S. 2017; Non-functioning pancreatic neuroendocrine tumors: surgery or observation? World J Gastrointest Endosc. 9:153–161. DOI:
10.4253/wjge.v9.i4.153. PMID:
28465781. PMCID:
PMC5394721.
69. Genç CG, Jilesen AP, Partelli S, Falconi M, Muffatti F, van Kemenade FJ, et al. 2018; A new scoring system to predict recurrent disease in grade 1 and 2 nonfunctional pancreatic neuroendocrine tumors. Ann Surg. 267:1148–1154. DOI:
10.1097/SLA.0000000000002123. PMID:
28594340.
70. Zou S, Jiang Y, Wang W, Zhan Q, Deng X, Shen B. 2020; Novel scoring system for recurrence risk classification of surgically resected G1/2 pancreatic neuroendocrine tumors - Retrospective cohort study. Int J Surg. 74:86–91. DOI:
10.1016/j.ijsu.2019.12.034. PMID:
31926324.
71. He L, Li H, Cai J, Chen L, Yao J, Zhang Y, et al. 2018; Prognostic value of the Glasgow prognostic score or modified Glasgow prognostic score for patients with colorectal cancer receiving various treatments: a systematic review and meta-analysis. Cell Physiol Biochem. 51:1237–1249. DOI:
10.1159/000495500. PMID:
30481755.
72. Zhang H, Ren D, Jin X, Wu H. 2020; The prognostic value of modified Glasgow Prognostic Score in pancreatic cancer: a meta-analysis. Cancer Cell Int. 20:462. DOI:
10.1186/s12935-020-01558-4. PMID:
32982584. PMCID:
PMC7510124.
73. Liu Z, Jin K, Guo M, Long J, Liu L, Liu C, et al. 2017; Prognostic value of the CRP/Alb ratio, a novel inflammation-based score in pancreatic cancer. Ann Surg Oncol. 24:561–568. DOI:
10.1245/s10434-016-5579-3. PMID:
27650825.
74. Zhang K, Gao HF, Mo M, Wu CJ, Hua YQ, Chen Z, et al. 2019; A novel scoring system based on hemostatic parameters predicts the prognosis of patients with advanced pancreatic cancer. Pancreatology. 19:346–351. DOI:
10.1016/j.pan.2018.12.010. PMID:
30638854.
75. Benavides M, Antón A, Gallego J, Gómez MA, Jiménez-Gordo A, La Casta A, et al. 2015; Biliary tract cancers: SEOM clinical guidelines. Clin Transl Oncol. 17:982–987. DOI:
10.1007/s12094-015-1436-2. PMID:
26607930. PMCID:
PMC4689747.
76. Balachandran P, Agarwal S, Krishnani N, Pandey CM, Kumar A, Sikora SS, et al. 2006; Predictors of long-term survival in patients with gallbladder cancer. J Gastrointest Surg. 10:848–854. DOI:
10.1016/j.gassur.2005.12.002. PMID:
16769541.
77. Hawkins WG, DeMatteo RP, Jarnagin WR, Ben-Porat L, Blumgart LH, Fong Y. 2004; Jaundice predicts advanced disease and early mortality in patients with gallbladder cancer. Ann Surg Oncol. 11:310–315. DOI:
10.1245/ASO.2004.03.011. PMID:
14993027.
78. Bartlett DL, Fong Y, Fortner JG, Brennan MF, Blumgart LH. 1996; Long-term results after resection for gallbladder cancer. Implications for staging and management. Ann Surg. 224:639–646. DOI:
10.1097/00000658-199611000-00008. PMID:
8916879. PMCID:
PMC1235441.
79. Fong Y, Wagman L, Gonen M, Crawford J, Reed W, Swanson R, et al. 2006; Evidence-based gallbladder cancer staging: changing cancer staging by analysis of data from the National Cancer Database. Ann Surg. 243:767–771. discussion 771–774. DOI:
10.1097/01.sla.0000219737.81943.4e. PMID:
16772780. PMCID:
PMC1570569.
80. Tran TB, Norton JA, Ethun CG, Pawlik TM, Buettner S, Schmidt C, et al. 2017; Gallbladder cancer presenting with jaundice: uniformly fatal or still potentially curable? J Gastrointest Surg. 21:1245–1253. DOI:
10.1007/s11605-017-3440-z. PMID:
28497252. PMCID:
PMC5907798.
81. Cubertafond P, Gainant A, Cucchiaro G. 1994; Surgical treatment of 724 carcinomas of the gallbladder. Results of the French Surgical Association Survey. Ann Surg. 219:275–280. DOI:
10.1097/00000658-199403000-00007. PMID:
8147608. PMCID:
PMC1243135.
82. Shukla PJ, Neve R, Barreto SG, Hawaldar R, Nadkarni MS, Mohandas KM, et al. 2008; A new scoring system for gallbladder cancer (aiding treatment algorithm): an analysis of 335 patients. Ann Surg Oncol. 15:3132–3137. DOI:
10.1245/s10434-008-9917-y. PMID:
18459007.
83. Leon AR. 2008; A new scoring system for gallbladder cancer: the first step of a long walk. Ann Surg Oncol. 15:2991–2992. DOI:
10.1245/s10434-008-0091-z. PMID:
18709414.
85. Pan QX, Su ZJ, Zhang JH, Wang CR, Ke SY. 2017; Glasgow Prognostic Score predicts prognosis of intrahepatic cholangiocarcinoma. Mol Clin Oncol. 6:566–574. DOI:
10.3892/mco.2017.1166. PMID:
28413670. PMCID:
PMC5374901.
86. Wang Y, Li J, Xia Y, Gong R, Wang K, Yan Z, et al. 2013; Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol. 31:1188–1195. DOI:
10.1200/JCO.2012.41.5984. PMID:
23358969.
87. Raoof M, Dumitra S, Ituarte PHG, Melstrom L, Warner SG, Fong Y, et al. 2017; Development and validation of a prognostic score for intrahepatic cholangiocarcinoma. JAMA Surg. 152:e170117. DOI:
10.1001/jamasurg.2017.0117. PMID:
28297009. PMCID:
PMC5624806.
88. Hahn F, Müller L, Mähringer-Kunz A, Schotten S, Düber C, Hinrichs JB, et al. 2020; Risk prediction in intrahepatic cholangiocarcinoma: direct comparison of the MEGNA score and the 8th edition of the UICC/AJCC Cancer staging system. PLoS One. 15:e0228501. DOI:
10.1371/journal.pone.0228501. PMID:
32012198. PMCID:
PMC6996849.
89. Schnitzbauer AA, Eberhard J, Bartsch F, Brunner SM, Ceyhan GO, Walter D, et al. 2020; The MEGNA score and preoperative anemia are major prognostic factors after resection in the German intrahepatic cholangiocarcinoma cohort. Ann Surg Oncol. 27:1147–1155. DOI:
10.1245/s10434-019-07968-7. PMID:
31646454.
90. Aakre CA, Dziadzko MA, Herasevich V. 2017; Towards automated calculation of evidence-based clinical scores. World J Methodol. 7:16–24. DOI:
10.5662/wjm.v7.i1.16. PMID:
28396846. PMCID:
PMC5366935.
91. Hemingway H, Croft P, Perel P, Hayden JA, Abrams K, Timmis A, et al. 2013; Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. BMJ. 346:e5595. DOI:
10.1136/bmj.e5595. PMID:
23386360. PMCID:
PMC3565687.
92. Riley RD, Hayden JA, Steyerberg EW, Moons KG, Abrams K, Kyzas PA, et al. 2013; Prognosis research strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 10:e1001380. DOI:
10.1371/journal.pmed.1001380. PMID:
23393429. PMCID:
PMC3564757.
93. Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, Schroter S, et al. 2013; Prognosis research strategy (PROGRESS) 3: prognostic model research. PLoS Med. 10:e1001381. DOI:
10.1371/journal.pmed.1001381. PMID:
23393430. PMCID:
PMC3564751.
94. Hingorani AD, Windt DA, Riley RD, Abrams K, Moons KG, Steyerberg EW, et al. 2013; Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ. 346:e5793. DOI:
10.1136/bmj.e5793. PMID:
23386361. PMCID:
PMC3565686.
95. Collins GS, Reitsma JB, Altman DG, Moons KG. 2015; Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. The TRIPOD Group. Circulation. 131:211–219. DOI:
10.1161/CIRCULATIONAHA.114.014508. PMID:
25561516. PMCID:
PMC4297220.
96. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. 2014; Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 13:8–17. DOI:
10.1016/j.csbj.2014.11.005. PMID:
25750696. PMCID:
PMC4348437.
97. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. 2019; A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 110:12–22. DOI:
10.1016/j.jclinepi.2019.02.004. PMID:
30763612.
99. Dou D, Yang S, Lin Y, Zhang J. 2018; An eight-miRNA signature expression-based risk scoring system for prediction of survival in pancreatic adenocarcinoma. Cancer Biomark. 23:79–93. DOI:
10.3233/CBM-181420. PMID:
29991127.
100. Pencina MJ, D'Agostino RB Sr. 2015; Evaluating discrimination of risk prediction models: the C statistic. JAMA. 314:1063–1064. DOI:
10.1001/jama.2015.11082. PMID:
26348755.