Journal List > J Nutr Health > v.52(2) > 1122034

Lee, Park, Han, Tana, and Chang: Study on relationship between caffeine intake level and metabolic syndrome and related diseases in Korean adults: 2013~2016 Korea National Health and Nutrition Examination Survey

Abstract

Purpose:

This study examined the relationship between caffeine intake and metabolic syndrome in Korean adults using the 2013~2016 Korea National Health and Nutrition Examination Survey data (KNHANES).

Methods:

The caffeine database (DB) developed by Food and Drug Safety Assessment Agency in 2014 was used to estimate the caffeine consumption. The food and beverage consumption of the 24 hr recall data of 2013~2016 KNHANES were matched to items in the caffeine DB and the daily caffeine intakes of the individuals were calculated. The sample was limited to non-pregnant healthy adults aged 19 years and older, who were not taking any medication for disease treatment.

Results:

The average daily caffeine intake was 41.97 mg, and the daily intake of caffeine of 97% of the participants was from coffee, teas, soft drinks, and other beverages. Multivariate analysis showed that the caffeine intake did not affect metabolic syndrome, hypertension, low HDL-cholesterol, and abdominal obesity. Diabetes and hypertriglyceridemia, however, were 0.76 (95% CI: 0.63~0.93), and 0.87 (95% CI: 0.77~0.98) in third quintile (Q3), and 0.66 (95% CI: 0.53 ~0.82) and 0.83 (95% CI: 0.73~0.94) in fourth quintile (Q4) compared to Q1, respectively. Therefore, caffeine intake of 3.66~45.81 mg per day is related to a lower risk of diabetes and hypertriglyceridemia.

Conclusion:

The study showed that adequate caffeine intake (approximately 45 mg) was associated with a lower prevalence of diabetes and hypertriglyceridemia. Therefore, it can be used as a guideline for the adequate level of caffeine intake for maintaining health.

REFERENCES

1.Dorfman LJ., Jarvik ME. Comparative stimulant and diuretic actions of caffeine and theobromine in man. Clin Pharmacol Ther. 1970. 11(6):869–872.
crossref
2.Harland BF. Caffeine and nutrition. Nutrition. 2000. 16(7-8):522–526.
crossref
3.Kim M. Assessment of caffeine intake from foods. Cheongju: National Institute of Food and Drug Safety Evaluation;2014.
4.Reyes CM., Cornelis MC. Caffeine in the diet: country-level consumption and guidelines. Nutrients. 2018. 10(11):1772–1806.
crossref
5.Lovallo WR., Wilson MF., Vincent AS., Sung BH., McKey BS., Whitsett TL. Blood pressure response to caffeine shows incomplete tolerance after short-term regular consumption. Hypertension. 2004. 43(4):760–765.
crossref
6.Yoon MH., Lee MJ., Hwang SI., Moon SK., Kim JK., Jeong IH, et al. A evaluation of the caffeine contents in commercial foods. J Food Hyg Saf. 2001. 16(4):295–299.
7.Lim HS., Hwang JY., Choi JC., Kim M. Assessment of caffeine intake in the Korean population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015. 32(11):1786–1798.
crossref
8.Frary CD., Johnson RK., Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005. 105(1):110–113.
crossref
9.Martyn D., Lau A., Richardson P., Roberts A. Temporal patterns of caffeine intake in the United States. Food Chem Toxicol. 2018. 111:71–83.
crossref
10.Temple JL., Bernard C., Lipshultz SE., Czachor JD., Westphal JA., Mestre MA. The safety of ingested caffeine: a comprehensive review. Front Psychiatry. 2017. 8:80–99.
crossref
11.Poole R., Kennedy OJ., Roderick P., Fallowfield JA., Hayes PC., Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017. 359:j5024.
crossref
12.Grosso G., Marventano S., Galvano F., Pajak A., Mistretta A. Factors associated with metabolic syndrome in a Mediterranean population: role of caffeinated beverages. J Epidemiol. 2014. 24(4):327–333.
crossref
13.Grosso G., Stepaniak U., Micek A., Topor-Mądry R., Pikhart H., Szafraniec K, et al. Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr. 2015. 54(7):1129–1137.
crossref
14.Takami H., Nakamoto M., Uemura H., Katsuura S., Yamaguchi M., Hiyoshi M, et al. Inverse correlation between coffee consumption and prevalence of metabolic syndrome: baseline survey of the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study in Tokushima, Japan. J Epidemiol. 2013. 23(1):12–20.
crossref
15.Shin H., Linton JA., Kwon Y., Jung Y., Oh B., Oh S. Relationship between coffee consumption and metabolic syndrome in Korean adults: data from the 2013-2014 Korea National Health and Nutrition Examination Survey. Korean J Fam Med. 2017. 38(6):346–351.
crossref
16.Yeon JY., Bae YJ. 3-in-1 coffee consumption is associated with metabolic factors in adults: based on 2012~2015 Korea National Health and Nutrition Examination Survey. J Nutr Health. 2017. 50(3):257–269.
crossref
17.Lee J., Lee JE., Kim Y. Relationship between coffee consumption and stroke risk in Korean population: the Health Examinees (HEXA) Study. Nutr J. 2017. 16(1):7.
crossref
18.Lee J., Kim HY., Kim J. Coffee consumption and the risk of obesity in Korean women. Nutrients. 2017. 9(12):E1340.
crossref
19.Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2015: Korea National Health and Nutrition Examination Survey (KNHANES VI-3). Cheongju: Korea Centers for Disease Control and Prevention;2016.
20.Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2016: Korea National Health and Nutrition Examination Survey (KNHANES VII-1). Cheongju: Korea Centers for Disease Control and Prevention;2017.
21.National Institutes of Health. ATP III guidelines At-A-Glance quick desk reference [Internet]. Bethesda (MD): National Institutes of Health;2001. [cited 2018 Mar 3]. Available from:. https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf.
22.Kim M. Investigation of naturally occurring caffeine in plant materials. Cheongju: National Institute of Food and Drug Safety Evaluation;2014.
23.Kwon S., Lee JS. Study on relationship between milk intake and prevalence rates of chronic diseases in adults based on 5th and 6th Korea National Health and Nutrition Examination Survey data. J Nutr Health. 2017. 50(2):158–170.
24.Rudolph E., Färbinger A., König J. Determination of the caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT). Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012. 29(12):1849–1860.
crossref
25.Yamada M., Sasaki S., Murakami K., Takahashi Y., Okubo H., Hirota N, et al. Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations. Public Health Nutr. 2010. 13(5):663–672.
crossref
26.Fulgoni VL 3rd., Keast DR., Lieberman HR. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr. 2015. 101(5):1081–1087.
crossref
27.Kim S. Coffee consumption behaviors, dietary habits, and dietary nutrient intakes according to coffee intake amount among university student. J Nutr Health. 2017. 50(3):270–283.
28.Lee H., Kwon S., Yon M., Kim D., Lee J., Nam J, et al. Dietary total sugar intake of Koreans: based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008-2011. J Nutr Health. 2014. 47(4):268–276.
crossref
29.Noordzij M., Uiterwaal CS., Arends LR., Kok FJ., Grobbee DE., Geleijnse JM. Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens. 2005. 23(5):921–928.
crossref
30.Kim N., Choi K. Lipid metabolic effects of caffeine using meta-analysis. J Korean Data Inf Sci Soc. 2012. 23(4):649–656.
crossref
31.Cai L., Ma D., Zhang Y., Liu Z., Wang P. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2012. 66(8):872–877.
crossref
32.Zheng XX., Xu YL., Li SH., Liu XX., Hui R., Huang XH. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr. 2011. 94(2):601–610.
crossref
33.Kim K., Kim K., Park SM. Association between the prevalence of metabolic syndrome and the level of coffee consumption among Korean women. PLoS One. 2016. 11(12):e0167007.
crossref
34.Kim Y., Je Y. Moderate coffee consumption is inversely associated with the metabolic syndrome in the Korean adult population. Br J Nutr. 2018. 120(11):1279–1287.
crossref
35.Appelhans BM., Baylin A., Huang MH., Li H., Janssen I., Kazlauskaite R, et al. Beverage intake and metabolic syndrome risk over 14 years: the Study of Women's Health Across the Nation. J Acad Nutr Diet. 2017. 117(4):554–562.
crossref
36.Kim HJ., Cho S., Jacobs DR Jr., Park K. Instant coffee consumption may be associated with higher risk of metabolic syndrome in Korean adults. Diabetes Res Clin Pract. 2014. 106(1):145–153.
crossref
37.Chiva-Blanch G., Badimon L. Effects of polyphenol intake on metabolic syndrome: current evidences from human trials. Oxid Med Cell Longev. 2017. 2017:5812401.
crossref

Fig. 1
The prodecure of selecting the subjects
jnh-52-227f1.tif
Table 1.
General characteristics of subjects by caffeine groups
  Total Q1 Q2 Q3 Q4 Q5 p-value
(0.00) (0.00 < ~ 3.66) (3.66 < ~ 12.31) (12.31 < ~ 45.81) (≥ 45.81)
No 20,558 5,219 2,996 4,181 4,093 4,069  
Sex1)
Male 8,428 (49.53) 1,905 (46.03) 1,147 (44.42) 1,594 (44.02) 2,029 (57.36) 1,753 (53.48) < 0.0001
Female 12,130 (50.47) 3,314 (53.97) 1,849 (55.58) 2,587 (55.98) 2,064 (42.64) 2,316 (46.52)  
Age (year)2) 46.69 ± 0.21 47.86 ± 0.39b 51.23 ± 0.42a 50.74 ± 0.36a 46.40 ± 0.32c 39.91 ± 0.31d < 0.0001
Height (cm)2) 164.22 ± 0.10 163.14 ± 0.19c 162.67 ± 0.23d 162.45 ± 0.19d 165.06 ± 0.18b 166.90 ± 0.17a < 0.0001
Weight (kg)2) 64.56 ± 0.12 63.63 ± 0.26c 63.38 ± 0.28c 63.13 ± 0.24c 65.26 ± 0.25b 66.70 ± 0.27a < 0.0001
BMI (kg/m2)2) 23.83 ± 0.04 23.79 ± 0.07 23.89 ± 0.08 23.83 ± 0.07 23.86 ± 0.07 23.82 ± 0.08 0.8933
Caffeine intake (mg/day)2)              
Mean 41.97 ± 0.89 0.00 ± 0.00e 1.42 ± 0.02d 6.94 ± 0.04c 21.65 ± 0.19b 154.41 ± 2.33a < 0.0001
Median 6.68 ± 0.19 0.00 ± 0.00 1.40 ± 0.03 6.37 ± 0.03 19.10 ± 0.08 120.71 ± 2.14  
Sugar intake (mg/day)2),3) 71.29 ± 0.57 62.40 ± 0.98d 69.21 ± 1.05c 69.57 ± 0.97c 75.26 ± 0.98b 81.46 ± 1.17a < 0.0001
Energy intake (mg/day)2),3) 1,963.11 ± 7.71 1,855.31 ± 14.49c 1,938.65 ± 18.40b 1,966.24 ± 15.16b 2,041.39 ± 16.37a 2,031.58 ± 18.08a < 0.0001
Protein intake (mg/day)2),3) 67.59 ± 0.35 64.31 ± 0.66d 67.60 ± 0.79b 66.18 ± 0.67bc 68.80 ± 0.80b 71.81 ± 0.85a < 0.0001
Fat intake (mg/day)2),3) 41.66 ± 0.29 36.81 ± 0.57d 40.87 ± 0.76c 40.71 ± 0.62c 43.52 ± 0.65b 47.30 ± 0.76a < 0.0001
Individual income1)
Low 4,897 (24.25) 1,340 (26.11) 680 (23.36) 1,039 (25.43) 1,092 (27.61) 746 (18.93) < 0.0001
Medium-low 5,109 (24.52) 1,326 (25.08) 785 (25.82) 1,064 (24.42) 1,055 (25.73) 879 (22.22)  
Medium-high 5,167 (24.91) 1,238 (23.57) 750 (24.96) 1,093 (25.48) 1,000 (24.15) 1,086 (26.48)  
High 5,286 (26.31) 1,279 (25.25) 768 (25.86) 965 (24.67) 932 (22.50) 1,342 (32.38)  
House income1)
Low 4,021 (15.26) 1,400 (21.15) 636 (17.70) 965 (17.90) 738 (14.53) 282 (6.38) < 0.0001
Medium-low 5,105 (23.86) 1,305 (23.85) 772 (24.16) 1,132 (25.63) 1,056 (25.92) 840 (20.44)  
Medium-high 5,478 (28.91) 1,200 (26.07) 811 (29.09) 1,048 (27.68) 1,177 (30.35) 1,242 (31.42)  
High 5,855 (31.97) 1,278 (28.93) 764 (29.05) 1,016 (28.79) 1,108 (29.21) 1,689 (41.76)  
Education level1)
Elementary school or lower 4,467 (15.87) 1,579 (22.12) 783 (21.40) 1,144 (21.86) 752 (13.52) 209 (3.64) < 0.0001
Middle school graduation 2,009 (8.92) 539 (9.65) 386 (12.00) 450 (10.71) 431 (9.94) 203 (4.10)  
High school graduation 6,253 (36.86) 1,468 (36.80) 910 (35.09) 1,184 (34.44) 1,351 (40.11) 1,340 (37.01)  
College or higher 6,296 (38.35) 1,209 (31.43) 745 (31.51) 1,068 (32.99) 1,217 (36.43) 2,057 (55.25)  
Alcohol drinker1),4)
Non drinker 9,225 (40.99) 2,742 (47.32) 1,378 (42.70) 2,009 (45.32) 1,685 (38.76) 1,411 (32.08) < 0.0001
Drinker 10,422 (59.01) 2,197 (52.68) 1,510 (57.30) 1,976 (54.68) 2,213 (61.24) 2,526 (67.92)  
Smoking1),5)
Non smoker 16,240 (78.14) 4,393 (84.65) 2,467 (81.72) 3,362 (81.22) 2,903 (70.13) 3,115 (74.09) < 0.0001
Smoker 3,388 (21.86) 543 (15.35) 421 (18.28) 614 (18.78) 988 (29.87) 822 (25.91)  
Aerobic activity1),6)              
Non activity 10,240 (49.41) 2,663 (50.04) 1,509 (51.03) 2,168 (53.12) 2,091 (51.25) 1,809 (43.30) < 0.0001
Activity 8,741 (50.59) 2,108 (49.96) 1,307 (48.97) 1,673 (46.88) 1,652 (48.75) 2,001 (56.70)  

1) n (%)

2) Mean ± SE

3) Sex, age adjusted mean ± SE

4) Current drinker: People who drink more than once a month

5) Smoker: Smoking more than 5 packs of cigarette for lifetime and now smoking

6) Current activity: This is the case of exercising more than 2 hours and 30 minutes with moderate intensity physical activity or more than 1 hour and 15 minutes of high intensity physical activity per week.

abc: significantly different at α = 0.05 by turkey's test

Table 2.
Food and caffeine intake by caffeine source food groups by caffeine groups
  Total Q1 Q2 Q3 Q4 Q5 p-value
(n = 20,558) (n = 5,219) (n = 2,996) (n = 4,181) (n = 4,093) (n = 4,069)
Food intake1)
Processed milk and Soybean milk2) 2.94 ± 0.29 0.00 ± 0.00c 0.00 ± 0.00c 0.00 ± 0.00c 0.23 ± 0.09b 12.40 ± 1.24a < 0.0001
Processed grain, sugar and cereals3) 0.09 ± 0.02 0.00 ± 0.00c 0.22 ± 0.09a 0.20 ± 0.11a 0.02 ± 0.01b 0.09 ± 0.04a 0.0012
Cookie, bread, and chewing gum4) 2.62 ± 0.16 0.04 ± 0.01d 2.12 ± 0.23c 3.11 ± 0.33ab 4.43 ± 0.52a 3.57 ± 0.37a < 0.0001
Ice cream5) 1.55 ± 0.13 0.07 ± 0.03b 2.32 ± 0.38a 1.78 ± 0.27a 2.34 ± 0.40a 1.76 ± 0.25a < 0.0001
Coffee 82.11 ± 2.06 0.01 ± 0.01e 2.18 ± 0.05d 11.30 ± 0.10c 26.49 ± 0.47b 318.37 ± 5.92a < 0.0001
Tea 15.56 ± 0.85 0.00 ± 0.00e 0.02 ± 0.01d 0.06 ± 0.02c 14.87 ± 0.99b 53.48 ± 3.42a < 0.0001
Chocolate and Processed cocoa 1.75 ± 0.21 0.00 ± 0.00e 0.49 ± 0.06d 1.42 ± 0.13c 2.32 ± 0.29b 4.04 ± 0.88a < 0.0001
Soda and other processed drink6) 31.14 ± 1.35 0.00 ± 0.00e 0.07 ± 0.04d 4.44 ± 0.46c 53.04 ± 2.39b 82.78 ± 5.08a < 0.0001
Caffeine intake1)
Processed milk and Soybean milk2) 0.81 ± 0.08 0.00 ± 0.00c 0.00 ± 0.00c 0.00 ± 0.00c 0.06 ± 0.03b 3.44 ± 0.34a < 0.0001
Processed grain, sugar and cereals3) 0.01 ± 0.00 0.00 ± 0.00b 0.01 ± 0.01a 0.02 ± 0.01a 0.00 ± 0.00b 0.01 ± 0.00a 0.0028
Cookie, bread, and chewing gum4) 0.17 ± 0.01 0.00 ± 0.00d 0.11 ± 0.01c 0.20 ± 0.02b 0.30 ± 0.04a 0.22 ± 0.02b < 0.0001
Ice cream5) 0.07 ± 0.01 0.00 ± 0.00c 0.03 ± 0.01b 0.11 ± 0.02a 0.13 ± 0.03a 0.10 ± 0.02a < 0.0001
Coffee 35.06 ± 0.86 0.00 ± 0.00e 1.15 ± 0.02d 5.99 ± 0.06c 13.62 ± 0.23b 132.83 ± 2.46a < 0.0001
Tea 2.35 ± 0.13 0.00 ± 0.00d 0.00 ± 0.00d 0.01 ± 0.00c 2.24 ± 0.15b 8.06 ± 0.52a < 0.0001
Chocolate and Processed cocoa 0.47 ± 0.08 0.00 ± 0.00e 0.10 ± 0.01d 0.31 ± 0.03c 0.52 ± 0.07b 1.24 ± 0.32a < 0.0001
Soda and other processed drink6) 3.04 ± 0.14 0.00 ± 0.00e 0.01 ± 0.00d 0.31 ± 0.03c 4.78 ± 0.22b 8.52 ± 0.54a < 0.0001

1) Sex, age adjusted mean ± SE

2) Processed milk and Soybean milk contain ingredients of green tea or chocolate or coffee or cocoa

3) Processed grain, sugar and cereals contain ingredients of cocoa or chocolate

4) Cookie, bread, and chewing gum contain ingredients of cocoa or chocolate

5) Ice cream contains ingredients of green tea, chocolate, coffee or cocoa

6) Processed drink is a high caffeine drink that contain guarana extract.

abc: significantly different at α = 0.05 by turkey's test

Table 3.
Blood pressure, waist circumference, blood glucose and lipid profile by caffeine groups
  Total Q1 Q2 Q3 Q4 Q5 p-Value
(n = 20,558) (n = 5,219) (n = 2,996) (n = 4,181) (n = 4,093) (n = 4,069)
Systolic blood pressure (mmHg) 118.59 ± 0.17 118.98 ± 0.29a 119.09 ± 0.36a 118.81 ± 0.29a 118.47 ± 0.28a 117.66 ± 0.29b 0.0017
Diastolic blood pressure (mmHg) 75.08 ± 0.12 74.29 ± 0.19b 75.54 ± 0.27a 75.25 ± 0.21a 75.34 ± 0.21a 75.29 ± 0.21a < 0.0001
Waist circumference (cm) 62.87 ± 0.09 62.57 ± 0.20b 62.87 ± 0.23b 62.64 ± 0.20b 62.51 ± 0.21b 63.84 ± 0.23a 0.0001
Fast blood glucose (mg/dL) 99.97 ± 0.22 100.41 ± 0.48 100.06 ± 0.51 100.14 ± 0.46 99.23 ± 0.38 99.93 ± 0.43 0.3180
Total cholesterol (mg/dL) 191.62 ± 0.37 188.20 ± 0.64c 191.27 ± 0.93b 190.82 ± 0.76b 194.16 ± 0.77a 194.12 ± 0.71a < 0.0001
HDL-cholesterol (mg/dL) 51.14 ± 0.12 50.51 ± 0.21b 51.68 ± 0.31a 51.36 ± 0.26a 51.25 ± 0.26a 51.15 ± 0.23a 0.0107
Triglyceride (mg/dL) 137.90 ± 1.06 139.96 ± 2.31 136.91 ± 3.40 136.55 ± 2.22 139.06 ± 2.53 136.41 ± 2.30 0.7680

Sex, age adjusted mean ± SE

abc: significantly different at α = 0.05 by turkey's test

Table 4.
Logistic regression analysis between daily caffeine intake and metabolic syndrome
  Normal Disease Crude Sex, age adjusted Multivariate adjusted1)
Hypertension
Q1 (0.00 mg) 2,945 (23.43)2) 2,098 (25.02) 1 1 1
Q2 (≤ 3.66 mg) 1,579 (11.81) 1,290 (15.69) 1.24 (1.10, 1.41)3) 1.11 (0.97, 1.27) 1.16 (1.00, 1.33)
Q3 (3.66 < ~ 12.31 mg) 2,292 (17.45) 1,716 (20.99) 1.13 (1.01, 1.26) 1.00 (0.89, 1.14) 1.00 (0.87, 1.14)
Q4 (12.31 < ~ 45.81 mg) 2,503 (20.97) 1,467 (20.49) 0.92 (0.82, 1.02) 0.94 (0.83, 1.07) 0.94 (0.82, 1.08)
Q5 (≥ 45.85 mg) 2,905 (26.34) 1,068 (17.81) 0.63 (0.57, 0.71) 0.99 (0.87, 1.13) 1.08 (0.94, 1.24)
p for trend     < 0.0001 0.3509 0.9211
Diabetes
Q1 (0.00 mg) 4,129 (22.89) 615 (29.69) 1 1 1
Q2 (≤ 3.66 mg) 2,449 (12.83) 372 (16.97) 1.02 (0.85, 1.22) 0.89 (0.74, 1.07) 0.94 (0.77, 1.14)
Q3 (3.66 < ~ 12.31 mg) 3,482 (18.56) 426 (20.70) 0.86 (0.72, 1.02) 0.76 (0.63, 0.91) 0.76 (0.63, 0.93)
Q4 (12.31 < ~ 45.81 mg) 3,553 (21.29) 341 (17.19) 0.62 (0.51, 0.75) 0.67 (0.55, 0.82) 0.66 (0.53, 0.82)
Q5 (≥ 45.85 mg) 3,672 (24.44) 244 (15.45) 0.49 (0.39, 0.60) 0.86 (0.68, 1.08) 1.00 (0.78, 1.27)
p for trend     < 0.0001 0.0062 0.0548
Abdominal obesity
Q1 (0.00 mg) 3,744 (23.61) 1,465 (25.00) 1 1 1
Q2 (≤ 3.66 mg) 2,113 (13.09) 880 (13.54) 0.98 (0.86, 1.12) 0.91 (0.80, 1.04) 0.93 (0.80, 1.07)
Q3 (3.66 < ~ 12.31 mg) 2,950 (18.29) 1,226 (20.17) 1.04 (0.92, 1.18) 0.99 (0.87, 1.12) 0.99 (0.87, 1.13)
Q4 (12.31 < ~ 45.81 mg) 3,004 (20.91) 1,082 (20.27) 0.92 (0.81, 1.04) 0.92 (0.81, 1.05) 0.94 (0.81, 1.08)
Q5 (≥ 45.85 mg) 3,106 (24.09) 956 (21.03) 0.83 (0.73, 0.94) 0.99 (0.87, 1.13) 1.06 (0.92, 1.22)
p for trend     0.0019 0.8405 0.5458
Low HDL-cholesterol
Q1 (0.00 mg) 2,483 (22.22) 2,280 (25.51) 1 1 1
Q2 (≤ 3.66 mg) 1,514 (12.46) 1,319 (14.31) 1.00 (0.88, 1.13) 0.87 (0.76, 0.99) 0.89 (0.78, 1.02)
Q3 (3.66 < ~ 12.31 mg) 2,121 (17.79) 1,798 (20.25) 0.99 (0.89, 1.11) 0.88 (0.79, 0.99) 0.89 (0.79, 1.00)
Q4 (12.31 < ~ 45.81 mg) 2,290 (21.40) 1,611 (20.19) 0.82 (0.74, 0.92) 0.89 (0.79, 1.01) 0.89 (0.79, 1.01)
Q5 (≥ 45.85 mg) 2,519 (26.13) 1,403 (19.74) 0.66 (0.59, 0.74) 0.86 (0.77, 0.98) 0.90 (0.79, 1.03)
p for trend     < 0.0001 0.0339 0.1277
Hypertriglyceridemia
Q1 (0.00 mg) 2,819 (23.04) 1,944 (24.26) 1 1 1
Q2 (≤ 3.66 mg) 1,644 (12.61) 1,189 (14.15) 1.07 (0.94, 1.20) 0.95 (0.84, 1.07) 0.93 (0.82, 1.06)
Q3 (3.66 < ~ 12.31 mg) 2,398 (18.48) 1,521 (19.18) 0.99 (0.88, 1.10) 0.90 (0.80, 1.01) 0.87 (0.77, 0.98)
Q4 (12.31 < ~ 45.81 mg) 2,434 (21.03) 1,467 (20.76) 0.94 (0.83, 1.05) 0.88 (0.78, 0.99) 0.83 (0.73, 0.94)
Q5 (≥ 45.85 mg) 2,598 (24.84) 1,324 (21.65) 0.83 (0.74, 0.93) 1.00 (0.89, 1.13) 0.99 (0.87, 1.13)
p for trend     0.0003 0.5598 0.3432
Metabolic syndrome
Q1 (0.00 mg) 3,797 (23.43) 1,422 (25.97) 1 1 1
Q2 (≤ 3.66 mg) 2,123 (12.60) 873 (15.40) 1.10 (0.97, 1.26) 1.00 (0.87, 1.14) 1.00 (0.87, 1.15)
Q3 (3.66 < ~ 12.31 mg) 3,043 (18.11) 1,138 (21.19) 1.06 (0.93, 1.20) 0.97 (0.85, 1.11) 0.93 (0.81, 1.07)
Q4 (12.31 < ~ 45.81 mg) 3,168 (21.16) 925 (19.25) 0.82 (0.72, 0.94) 0.88 (0.77, 1.02) 0.86 (0.74, 1.00)
Q5 (≥ 45.85 mg) 3,318 (24.71) 751 (18.18) 0.66 (0.58, 0.76) 1.02 (0.88, 1.17) 1.06 (0.91, 1.24)
p for trend     < 0.0001 0.5530 0.7170

1) Adjusted for age, sex (male, female), education (elementary school or lower, middle school, high school, college or higher), alcohol drinking (drinker, non-drinker), aerobic activity (activity, non-activity), smoking (smoker, non-smoker), individual income (low, medium-low, medium-high, high), total sugar intake, total energy intake

2) n (%)

3) Odds ratio (95% confidence intervals)

TOOLS
Similar articles