Journal List > J Nutr Health > v.50(1) > 1081542

Kim, Park, Lee, Lim, and Song: Comparative study on prevalence and components of metabolic syndrome and nutritional status by occupation and gender: Based on the 2013 Korea National Health and Nutrition Examination Survey

Abstract

Purpose

In this study, factors of metabolic syndrome and nutritional status were examined according to gender and occupations using the 2013 Korea National Health and Nutrition Examination Survey (KNHANES). Methods: This study was conducted on 1,750 workers (male: 892, female: 858) aged between 30 and 64, who participated in a health survey, health examination, and nutrition survey using the 6th 2013 KNHANES. Occupations were classified into white collar and blue collar workers, and nutrient intake was analyzed using a food frequency questionnaire. Analysis of complex sample design data through SPSS 19.0 was used for analysis. Results: The prevalence rate of metabolic syndrome among blue collar (35.1%) was higher than that among white collar workers (26.8%) in male subjects (p < 0.05) as well as in blue collar (24.8%) compared to white collar workers (8.9%) in female subjects (p < 0.001). Intake frequency per week, considering one portion by food category, showed significant differences in cooked rice (p < 0.05) and bakeries and confectioneries (p < 0.05) in make workers as well as stew and casserole (p < 0.01) and fruits (p < 0.05) in female workers. With regard to nutrient intake by occupation and gender, white collar workers consumed a greater amount of nutrients (not including total energy intake) compared to blue collar workers in both male and female workers. With regard to nutrient adequacy ratio (NAR) and mean adequacy ratio (MAR) according to gender and occupation, white collar workers showed higher numbers than blue collar workers in both male and female subjects. Conclusions: This study examined the prevalence rates of metabolic syndrome and nutrient intake according to gender and occupation. In both male and female subjects, blue collar workers showed higher prevalence rates compared to white collar workers, and their diet quality was worse than white collar workers' diet quality. Considering this result, customized nutrition education according to gender and occupation should be provided to workers to prevent diseases.

References

1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014: Korea National Health and Nutrition Examination Survey (KNHANES VI-2). Cheongju: Korea Centers for Disease Control and Prevention;2015.
2. Sung EJ. The trend of chronic diseases in Korea. J Korean Dairy Technol Sci Assoc. 2005; 23(2):99–106.
3. Park E, Choi SJ, Lee HY. The prevalence of metabolic syndrome and related risk factors based on the KNHANES V 2010. J Agric Med Community Health. 2013; 38(1):1–13.
crossref
4. Loucks EB, Rehkopf DH, Thurston RC, Kawachi I. Socioeconomic disparities in metabolic syndrome differ by gender: evidence from NHANES III. Ann Epidemiol. 2007; 17(1):19–26.
crossref
5. Booth SL, Sallis JF, Ritenbaugh C, Hill JO, Birch LL, Frank LD, Glanz K, Himmelgreen DA, Mudd M, Popkin BM, Rickard KA, St Jeor S, Hays NP. Environmental and societal factors affect food choice and physical activity: rationale, influences, and leverage points. Nutr Rev. 2001; 59(3 Pt 2):S21–S39.
crossref
6. Park MJ, Yun KE, Lee GE, Cho HJ, Park HS. The relationship between socioeconomic status and metabolic syndrome among Korean adults. Korean J Obes. 2006; 15(1):10–17.
7. Moon HK, Kong JE. Assessment of nutrient intake for middle aged with and without metabolic syndrome using 2005 and 2007 Korean National Health and Nutrition Survey. Korean J Nutr. 2010; 43(1):69–78.
crossref
8. Dallongeville J, Cottel D, Ferrières J, Arveiler D, Bingham A, Rui-davets JB, Haas B, Ducimetière P, Amouyel P. Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care. 2005; 28(2):409–415.
crossref
9. Im JS, Choi DK, Yim J, Hong D, Kim JK, Park SH, Youn ST. Socioeconomic differentials in stroke and cardiovascular disease mortality in Korea. J Korean Soc Health Educ Promot. 2006; 23(2):109–119.
10. Shin SC, Kim MC. The effect of occupation and employment status upon perceived health in South Korea. Health Soc Sci. 2007; 22:205–224.
11. Kim E, Oh SW. Gender differences in the association of occupation with metabolic syndrome in Korean adults. Korean J Obes. 2012; 21(2):108–114.
crossref
12. Kim SA, Song IH, Wang JH, Kim YK, Park WS. The prevalence of chronic diseases, status of health behaviors and medical service utilization: focused on female blue-collar workers. J Agric Med Community Health. 2010; 35(3):239–248.
13. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112(17):2735–2752.
14. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, Kim DY, Kwon HS, Kim SR, Lee CB, Oh SJ, Park CY, Yoo HJ. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract. 2007; 75(1):72–80.
crossref
15. The Korean Nutrition Society. Dietary reference intakes for Koreans. 1st revision. Seoul: The Korean Nutrition Society;2010.
16. Yun SH, Shim JS, Kweon S, Oh K. Development of a food frequency questionnaire for the Korea National Health and Nutrition Examination Survey: data from the fourth Korea National Health and Nutrition Examination Survey. Korean J Nutr. 2013; 46(2):186–196.
17. Kim HR, Khang YH, Yoon KJ, Kim CS. Socioeconomic health inequalities and counter policies in Korea. Seoul: Korea Institute for Health and Social Affairs;2004.
18. Park HS, Oh SW, Cho SI, Choi WH, Kim YS. The metabolic syndrome and associated lifestyle factors among South Korean adults. Int J Epidemiol. 2004; 33(2):328–336.
crossref
19. Kwon LS, Lee SH. Environmental factors related factors of metabolic syndrome of Korean adults: focused on the fourth term Korea National Health and Nutrition Examination Survey. J Korean Soc Living Environ Syst. 2012; 19(6):676–688.
20. Kim DI. The relationship between walking activity per week, metabolic syndrome risk factors, and prevalence of metabolic syndrome in Korean adult population: data from the fifth Korea National Health and Nutrition Examination Survey V-3. J Korean Soc Living Environ Syst. 2015; 22(1):58–65.
21. Kim DI. Differences of metabolic syndrome risk factors according to moderate intensity walking activity and vigorous physical activity among Korean adults population: using data from the fifth Korea National Health and Nutrition Examination Survey V(2010–2012 years). J Korean Soc Living Environ Syst. 2015; 22(3):388–397.
22. Choi SY, Bin JE, Kim SH. An investigation of health status in male workers. Korean J Food Nutr. 2012; 25(4):1047–1054.
crossref
23. Choinière R, Lafontaine P, Edwards AC. Distribution of cardiovascular disease risk factors by socioeconomic status among Canadian adults. CMAJ. 2000; 162(9 Suppl):S13–S24.
24. Lee MS. Relationship of the relative risks of the metabolic syndrome and dietary habits of middle-aged in Seoul. Korean J Community Nutr. 2004; 9(6):695–705.
25. Bowman S. Low economic status is associated with suboptimal intakes of nutritious foods by adults in the National Health and Nutrition Examination Survey 1999–2002. Nutr Res. 2007; 27(9):515–523.
crossref
26. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med. 2003; 163(4):427–436.
27. World Health Organization Western Pacific Region; International Association for the Study of Obesity; International Obesity Task Force. The Asia-pacific perspective: redefining obesity and its treatment. Sydney: Health Communications Australia Pty Limited;2000.
28. Park J, Kweon S, Kim Y, Jang MJ, Oh K. Dietary behaviors related to metabolic syndrome in Korean adults. Korean J Community Nutr. 2012; 17(5):664–675.
crossref
29. Myong JP, Kim HR, Jung-Choi K, Baker D, Choi B. Disparities of metabolic syndrome prevalence by age, gender and occupation among Korean adult workers. Ind Health. 2012; 50(2):115–122.
crossref
30. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat Rep. 2009; 13(13):1–7.
31. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, Conlin PR, Erlinger TP, Rosner BA, Laranjo NM, Charleston J, McCarron P, Bishop LM, OmniHeart Collaborative Research Group; OmniHeart Collaborative Research Group. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005; 294(19):2455–2464.
32. Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004; 23(4):447–456.
crossref
33. Shin D, Joh HK, Kim KH, Park SM. Benefits of potassium intake on metabolic syndrome: ?the fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Atherosclerosis. 2013; 230(1):80–85.
crossref
34. Yoo H, Kim Y. A study on the characteristics of nutrient intake in metabolic syndrome subjects. Korean J Nutr. 2008; 41(6):510–517.
35. Oh HM, Yoon JS. Health and nutritional status of industrial workers. Korean J Community Nutr. 2000; 5(1):13–22.

Table 1.
Socioeconomic and health-related characteristics of the subjects by sex
  Male (n = 892)   Female (n = 858)   Total (n = 1,750)  
Variables Blue-collar White-collar p-value Blue-collar White-collar p-value r Blue-collar White-collar p-value
  (n = 539) (n = 353)   (n = 532) (n = 326)   (n = 1,071) (n = 679)  
Age (yr)                  
30 ∼ 39 135 (29.5)1) 126 (38.2)   73 (15.3) 147 (43.0)   208 (23.7) 273 (40.1)  
40 ∼ 49 159 (32.6) 140 (38.3) < 0.001∗∗∗ 169 (34.6) 121 (39.7) < 0.001∗∗∗ 328 (33.4) 261 (38.9) < 0.001∗∗∗
50 ∼ 59 176 (29.9) 68 (19.7)   224 (40.0) 51 (15.6)   400 (34.1) 119 (18.0)  
60 ∼ 64 69 (8.0) 19 (3.8)   66 (10.1) 7 (1.7)   135 (8.9) 26 (2.9)  
Marital status                  
Married 509 (93.8) 320 (89.3) 0.035∗ 523 (98.3) 288 (86.6) < 0.001∗∗∗ 1032 (88.2) 608 (95.6) < 0.001∗∗∗
Single 30 (6.2) 33 (10.7)   9 (1.7) 38 (13.4)   39 (11.8) 71 (4.4)  
Education                  
≤ Elementary school 59 (9.6) 1 (0.2)   135 (22.8) 2 (0.5)   194 (15.0) 3 (0.3)  
Middle school 78 (13.0) 2 (0.2) < 0.001∗∗∗ 80 (14.6) 5 (2.3) < 0.001∗∗∗ 158 (13.7) 7 (1.1) < 0.001∗∗∗
High school 251 (47.7) 74 (23.2)   253 (49.7) 84 (23.9)   504 (48.6) 158 (23.5)  
≥ College 151 (29.6) 276 (76.4)   64 (12.9) 235 (73.3)   215 (22.7) 511 (75.2)  
Income level                  
Low 139 (25.2) 37 (10.5)   146 (27.5) 41 (12.3)   285 (26.2) 78 (11.2)  
Middle-low 157 (30.2) 88 (26.8) < 0.001∗∗∗ 143 (26.2) 69 (22.9) < 0.001∗∗∗ 300 (28.6) 157 (25.2) < 0.001∗∗∗
Middle-high 135 (24.9) 94 (27.3)   138 (26.7) 87 (28.0)   273 (25.6) 181 (27.6)  
High 108 (19.7) 134 (35.5)   105 (19.6) 129 (36.8)   213 (19.7) 263 (36.0)  
Perceived health status                  
Very unhealthy 8 (1.7) 1 (0.2)   11 (1.9) 2 (0.4)   19 (1.8) 3 (0.3)  
Unhealthy Normal 52 (9.1) 286 (53.1) 27 (7.9) 180 (50.3) 0.152 79 (14.0) 296 (56.7) 33 (11.5) 154 (47.5) 0.002∗∗ 131 (11.1) 582 (54.6) 60 (9.4) 334 (49.1) 0.004∗∗
Healthy 167 (31.4) 131 (38.1)   120 (23.0) 119 (34.1)   287 (27.9) 250 (36.5)  
Very healthy 26 (4.7) 14 (3.5)   26 (4.3) 18 (6.6)   52 (4.6) 32 (4.8)  
Smoking                  
Non-smoker Ex-smoker 95 (18.5) 180 (30.8) 80 (23.9) 136 (36.7) < 0.001∗∗∗ 473 (87.9) 15 (2.9) 305 (92.6) 12 (4.4) < 0.001∗∗∗ 568 (47.0) 195 (19.3) 385 (51.6) 148 (23.6) < 0.001∗∗∗
Smoker 264 (50.8) 137 (39.5)   44 (9.2) 9 (3.0)   308 (33.7) 146 (24.8)  
Alcohol drinking                  
Never 67 (11.5) 42 (11.8)   181 (33.0) 75 (20.9)   248 (20.3) 117 (15.5)  
< 1 time/mth 1 ∼ 4 times/mth 46 (8.6) 197 (38.8) 34 (10.4) 150 (40.2) 0.341 118 (23.1) 158 (29.4) 86 (25.9) 129 (42.0) 0.002∗∗ 164 (14.6) 355 (34.9) 120 (16.6) 279 (40.9) 0.007∗∗
2 ∼ 3 times/wk 150 (27.9) 101 (29.6)   55 (10.5) 29 (9.0)   205 (20.8) 130 (21.3)  
≥ 4 times/wk 79 (13.2) 26 (8.1)   20 (4.0) 7 (2.2)   99 (9.4) 33 (5.7)  
Walking physical activity                  
Never 92 (19.7) 36 (11.5)   103 (19.5) 43 (11.8)   195 (19.6) 79 (11.6)  
1 ∼ 2 times/wk 139 (25.7) 86 (25.0) 0.002∗∗ 96 (19.0) 82 (24.9) 0.112 235 (22.9) 168 (25.0) 0.001∗∗
3 ∼ 4 times/wk 106 (17.5) 68 (17.0)   106 (19.0) 72 (21.5)   212 (18.1) 140 (18.8)  
≥ 5 times/wk 202 (37.2) 163(46.6)   227 (42.5) 129 (41.8)   429 (39.3) 292 (44.6)  

1) n (%) ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by complex samples χ2-test.

Table 2.
The anthropometric characteristics, biochemical indices and prevalence of each component of the metabolic syndrome of the subjects by sex
Variables Male (n = 892)   Female (n = 858)   Total (n = 1,750)  
Blue-collar White-collar p-value e Blue-collar White-collar p-value Blue-collar White-collar p-value
(n = 539) (n = 353)   (n = 532) (n = 326)   (n = 1,071) (n = 679)  
Height (cm) 170.89 ± 0.311) ) 171.96 ± 0.34 0.019∗ 157.30 ± 0.28 159.65 ± 0.36 < 0.001∗∗∗ 165.30 ± 0.30 167.00 ± 0.38 0.001∗∗
Weight (kg) 71.96 ± 0.49 72.82 ± 0.57 0.243 59.02 ± 0.41 56.92 ± 0.51 0.001∗∗ 66.64 ± 0.38 66.41 ± 0.51 0.709
Waist circumference (cm 84.30 ± 0.40 84.47 ± 0.50 0.772 78.40 ± 0.43 74.09 ± 0.53 < 0.001∗∗∗ 81.87 ± 0.33 80.29 ± 0.44 0.002∗∗
BMI (kg/m2)3) 24.60 ± 0.14 24.61 ± 0.17 0.956 23.85 ± 0.16 22.36 ± 0.20 < 0.001∗∗∗ 24.29 ± 0.11 23.70 ± 0.14 < 0.001∗∗∗
Underweight 6 (1.2)2) 5.0 (1.1)   15 (2.9) 19 (7.1)   21 (1.9) 24 (3.5)  
Normal Overweight 167 (31.7) 124 (23.6) 106 (31.1) 95 (26.3) 0.838 201 (39.0) 144 (26.9) 197 (60.0) 47 (14.6) < 0.001∗∗∗ 368 (32.7) 268 (24.9) 302 (42.8) 142 (21.6) 0.002∗∗
Obesity 242 (43.5) 147 (41.4)   172 (31.2) 64 (18.3)   414 (38.4) 211 (32.1)  
Systolic pressure (mmHg) 119.11 ± 0.8 118.23 ± 0.77 0.427 115.74 ± 0.73 107.77 ± 0.71 < 0.001∗∗∗ 117.72 ± 0.58 114.01 ± 0.62 < 0.001∗∗∗
Diastolic pressure (mmHg) 79.82 ± 0.52 80.70 ± 0.69 0.285 75.12 ± 0.49 72.33 ± 0.49 < 0.001∗∗∗ 77.89 ± 0.41 77.32 ± 0.50 0.335
Glucose (mg/dl) 102.95 ± 0.92 98.68 ± 0.91 0.001∗∗ ∗ 98.19 ± 1.10 92.29 ± 0.66 < 0.001∗∗∗ 100.99 ± 0.78 96.10 ± 0.61 < 0.001∗∗∗
Total cholesterol (mg/dl) 189.58 ± 1.78 194.53 ± 2.57 0.112 194.52 ± 1.85 184.81 ± 1.84 < 0.001∗∗∗ 191.62 ± 1.21 190.61 ± 1.50 0.598
HDL cholesterol (mg/dl) 44.49 ± 0.49 44.56 ± 0.51 0.919 50.70 ± 0.51 53.04 ± 0.68 0.005∗∗ 47.04 ± 0.36 47.98 ± 0.43 0.088
LDL cholesterol (mg/dl)4) 110.67 ± 1.82 114.20 ± 2.35 0.119 118.73 ± 1.52 112.62 ± 1.53 0.005∗∗ 113.98 ± 1.24 113.56 ± 1.42 0.811
Triglyceride (mg/dl) 172.13 ± 7.77 178.83 ± 8.67 0.584 125.47 ± 5.58 95.77 ± 3.59 < 0.001∗∗∗ 152.94 ± 5.23 145.32 ± 5.51 0.341
Metabolic Syndrome5) 187 (35.1) 99 (26.8) 0.012∗ 137 (24.8) 33 (8.9) < 0.001∗∗∗ 324 (30.9) 132 (19.6) < < 0.001∗∗∗
Abdominal obesity6) 140 (26.1) 88 (23.1) 0.320 112 (19.5) 34 (10.0) < 0.001∗∗∗ 252 (23.4) 122 (17.8) 0.007∗∗
High blood pressure7) 226 (40.6) 146 (38.9) 0.631 178 (32.0) 49 (13.7) < 0.001∗∗∗ 404 (37.1) 195 (28.7) 0.001∗∗
Hyperglycemia8) 244 (44.1) 113 (32.6) 0.001∗∗ ∗ 155 (29.3) 47 (13.4) < 0.001∗∗∗ 399 (38.0) 160 (24.9) < < 0.001∗∗∗
Hypertriglyceridemia9) 237 (44.2) 153 (43.5) 0.844 155 (29.2) 55 (15.9) < 0.001∗∗∗ 392 (38.1) 208 (32.4) 0.022∗
Low HDL cholesterol10) 200 (38.4) 125 (35.5) 0.439 282 (52.1) 140 (40.9) 0.003∗∗ 482 (44.0) 265 (37.7) 0.014∗

1) Mean ± SD 2) n (%) 3) Underweight: < 18.5 kg/m2, Normal: 18.5–22.9 kg/m2, Overweight: 23.0–24.9 kg/m2, Obesity: ≥ 25.0 kg/m2) LDL cholesterol = total cholesterol – HDL cholesterol – (triglyceride / 5) 5) Metabolic syndrome by NCEP ATP III criteria 6) Waist circumference: Male ≥ 90 cm, Female ≥ 85 cm 7) Blood pressure: ≥ 130/85 mmHg or medication 8) Fasting blood glucose: ≥ 110 mg/ dl or medication 9) Triglycerides: ≥ 150 mg/dl or medication 10) HDL cholesterol: Male < 40 mg/dl, Female < 50 mg/dl ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by complex samples χ2-test and general linear model t-test

Table 3.
OR and 95% CI for the metabolic syndrome factors compared to blue-collar
Metabolic syndrome factors Male   Female   Total  
OR (95% CI) p-value6) OR (95% CI) p-value OR (95% CI) p-value
Abdominal obesity1) 0.82 (0.579 ∼ 1.166) 0.270 0.83 (0.494 ∼ 1.408) 0.495 0.79 (0.590 ∼ 1.055) 0.109
High blood pressure2) 1.10 (0.765 ∼ 1.573) 0.612 0.97 (0.625 ∼ 1.492) 0.875 1.01 (0.754 ∼ 1.338) 0.976
Hyperglycemia3) 0.65 (0.454 ∼ 0.930) 0.019∗ 0.70 (0.432 ∼ 1.139) 0.151 0.68 (0.512 ∼ 0.903) 0.008∗∗
Hypertriglyceridemia4) 1.12 (0.801 ∼ 1.553) 0.516 1.04 (0.692 ∼ 1.564) 0.848 1.04 (0.802 ∼ 1.347) 0.771
Low HDL cholesterol5) 0.99 (0.672 ∼ 1.467) 0.973 0.78 (0.544 ∼ 1.126) 0.186 0.95 (0.716 ∼ 1.260) 0.720

1) Waist circumference: Male ≥ 90 cm, Female ≥ 85 cm 2) Blood pressure: ≥ 130/85 mmHg or medication 3) Fasting blood glucose: ≥ 110 mg/dl or medication 4) Triglycerides: ≥ 150 mg/dl or medication 5) HDL cholesterol: Male < 40 mg/dl, Female < 50 mg/dl 6) Adjusted for age, education, income, smoking, drinking OR: Odds Ratio, CI: Confidence Interval,

p < 0.05,

∗∗ p < 0.01 by multiple logistic regression

Table 4.
Dish frequency from each dish group of the subjects by sex
Variables (times/wk) Male (n = 892) p-value 2) Female (n = 858) p-value Total (n = 1,750) p-value 3)
Blue-collar (n = 539) White-collar (n = 353) Blue-collar (n = 532) White-collar (n = 326) Blue-collar (n = 1,071) White-collar (n = 679)
Cooked rices 19.58 ± 0.301) 18.46 ± 0.38 0.018∗ 15.20 ± 0.31 14.65 ± 0.40 0.309 17.46 ± 0.22 16.57 ± 0.29 0.016∗
Noodle and dumpling 3.02 ± 0.13 2.94 ± 0.14 0.691 1.70 ± 0.08 1.52 ± 0.09 0.169 2.41 ± 0.09 2.29 ± 0.09 0.362
Bakeries and confectioneries 2.64 ± 0.18 3.41 ± 0.27 0.023∗ 2.62 ± 0.20 3.21 ± 0.30 0.124 2.69 ± 0.15 3.40 ± 0.22 0.015∗
Stew and casserole 7.56 ± 0.27 7.76 ± 0.32 0.638 6.42 ± 0.21 5.55 ± 0.22 0.009∗∗ 7.03 ± 0.16 6.84 ± 0.21 0.499
Bean, meat, eggs and fishes 13.84 ± 0.49 13.23 ± 0.53 0.404 11.14 ± 0.47 10.57 ± 0.56 0.493 12.83 ± 0.33 12.07 ± 0.41 0.160
Vegetables and seaweed 38.26 ± 1.29 36.45 ± 1.53 0.374 34.63 ± 1.45 34.56 ± 1.79 0.980 36.95 ± 1.02 36.10 ± 1.23 0.596
Milk and dairy products 5.07 ± 0.25 5.62 ± 0.35 0.224 5.55 ± 0.32 5.82 ± 0.35 0.582 5.40 ± 0.21 5.68 ± 0.25 0.389
Fruits 8.35 ± 0.37 9.06 ± 0.42 0.211 11.09 ± 0.46 13.03 ± 0.65 0.021∗ 10.09 ± 0.32 10.92 ± 0.37 0.077
Beverages 57.28 ± 3.08 53.19 ± 2.57 0.282 33.49 ± 1.56 31.43 ± 1.68 0.399 46.48 ± 1.85 41.27 ± 1.49 0.036∗
Snacks 2.57 ± 0.16 2.85 ± 0.19 0.272 2.06 ± 0.15 2.57 ± 0.21 0.068 2.40 ± 0.11 2.75 ± 0.16 0.077
Alcohol 1.31 ± 0.18 1.32 ± 0.22 0.953 0.54 ± 0.08 0.49 ± 0.10 0.733 0.92 ± 0.10 0.93 ± 0.12 0.986

1) Mean ± SD 2) Adjusted for age and energy intake 3) Adjusted for sex, age and energy intake

p < 0.05,

∗∗ p < 0.01 by complex samples general linear model t-test

Table 5.
Comparison of nutrients intake of the subjects by sex1)
Variables Male (n = 892) p- Female (n = 858) p- Total (n = 1750) p-value 4)
Blue-collar (n = 539) White-collar (n = 353) p-value 3) Blue-collar (n = 532) White-collar (n = 326) p-value Blue-collar (n = 1,071) White-collar (n = 679)
Energy (kcal) 2 2,576.33 ± 38.802) 2,472.93 ± 49.05 0.102 1,875.07 ± 34.57 1 1,850.57 ± 38.42 0.671 2,246.23 ± 25.16 2 2,156.55 ± 33.75 0.045∗
Carbohydrate (g) 384.05 ± 2.74 387.42 ± 3.21 0.416 306.58 ± 2.12 315.42 ± 2.27 0.010∗ 356.59 ± 2.12 361.44 ± 2.32 0.137
Protein (g) 79.06 ± 0.64 81.82 ± 0.78 0.008∗∗ 61.77 ± 0.60 62.19 ± 0.60 0.666 73.87 ± 0.45 75.39 ± 0.56 0.040∗
Fat (g) 47.46 ± 0.65 49.70 ± 0.76 0.029∗ 35.32 ± 0.56 36.14 ± 0.68 0.406 43.78 ± 0.48 45.40 ± 0.56 0.038∗
Vitamin A (µgRE) 677.62 ± 12.35 715.49 ± 12.28 0.020∗ 625.13 ± 13.10 685.02 ± 19.07 0.019∗ 680.07 ± 8.81 723.80 ± 9.96 < 0.001∗∗∗
Vitamin C (mg) 105.60 ± 3.02 121.62 ± 3.81 0.001∗∗ 115.66 ± 3.29 143.48 ± 5.52 < < 0.001∗∗∗ 116.59 ± 2.64 135.26 ± 3.35 < 0.001∗∗∗
Vitamin B1 (mg) 2.19 ± 0.02 2.25 ± 0.02 0.031∗ 1.78 ± 0.01 1.83 ± 0.02 0.013∗ 2.07 ± 0.01 2.12 ± 0.01 0.007∗∗
Vitamin B2 (mg) 1.52 ± 0.02 1.59 ± 0.02 0.009∗∗ 1.23 ± 0.02 1.29 ± 0.02 0.054 1.45 ± 0.01 1.50 ± 0.02 0.006∗∗
Niacin (mg) 15.87 ± 0.15 16.93 ± 0.17 < < 0.001∗∗∗ 12.57 ± 0.13 13.10 ± 0.14 0.016∗ 14.92 ±0.10 15.72 ± 0.13 < 0.001∗∗∗
Calcium (mg) 553.50 ± 7.33 571.63 ± 7.46 0.093 476.17 ± 7.88 494.57 ± 10.48 0.171 537.91 ± 5.16 550.71 ± 6.20 0.107
Phosphorus (mg) 1,194.60 ± 9.07 1,225.84 ± 9.30 0.019∗ 974.93 ± 8.18 1 1,012.24 ± 11.48 0.013∗ 1,134.54 ± 6.33 1,160.42 ± 7.67 0.007∗∗
Sodium (mg) 4,016.93 ± 58.70 4,196.34 ± 65.24 0.037∗ 3,147.88 ± 52.35 3 3,111.32 ± 64.41 0.690 3,747.55 ± 39.32 3 3,851.71 ± 46.35 0.077
Potassium (mg) 3,175.96 ± 38.01 3,291.77 ± 37.03 0.031∗ 2,782.56 ± 34.15 3 3,018.60 ± 56.10 0.001∗∗ 3,119.45 ± 30.25 3 3,259.78 ± 36.53 0.002∗∗
Iron (mg) 16.13 ± 0.19 16.93 ± 0.18 0.002∗∗ 13.65 ± 0.15 14.16 ± 0.20 0.057 15.47 ± 0.13 16.14 ± 0.13 < 0.001∗∗∗

1) Nutrient intakes were estimated by food frequency questionnaire (FFQ). 2) Mean ± SD 3) Adjusted for age and energy intake, except for energy 4) Adjusted for sex, age and energy intake, except for energy ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by complex samples general linear model t-test

Table 6.
Percentage of nutrition intake of Korean RNI of the subjects by sex
Variables Male (n = 892) p-value 3) Female (n = 858) p-value Total (n = 1,750) p-value 4)
Blue-collar (n = 539) White-collar (n = 353) Blue-collar (n = 532) White-collar (n = 326) Blue-collar (n = 1,071) White-collar (n = 679)
Energy1) 110.18 ± 1.642) 105.66 ± 2.08 0.094 100.62 ± 1.85 99.39 ± 2.05 0.689 106.94 ± 1.14 102.47 ± 1.52 0.073
Protein 147.69 ± 1.20 152.74 ± 1.46 0.010∗ 137.27 ± 1.34 138.20 ± 1.34 0.666 148.70 ± 0.95 152.66 ± 1.10 0.007∗∗
Vitamin A 92.28 ± 1.70 97.35 ± 1.65 0.021∗ 99.02 ± 2.06 108.69 ± 3.05 0.017∗ 99.67 ± 1.30 106.15 ± 1.47 < 0.001∗∗∗
Vitamin C 105.60 ± 3.02 121.62 ± 3.81 0.001∗∗ 115.66 ± 3.29 143.48 ± 5.52 < 0.001∗∗∗ ∗ 116.59 ± 2.64 135.26 ± 3.35 < 0.001∗∗∗
Vitamin B1 172.10 ± 1.52 176.87 ± 1.51 0.038∗ 161.52 ± 1.24 166.59 ± 1.46 0.013∗ 174.52 ± 1.14 177.59 ± 1.15 0.067
Vitamin B2 101.41 ± 1.14 105.69 ± 1.33 0.009∗ 102.53 ± 1.36 107.36 ± 1.92 0.054 106.85 ± 0.89 111.20 ± 1.12 0.002∗∗
Niacin 99.17 ± 0.91 105.80 ± 1.09 < 0.001∗∗∗ 89.82 ± 0.92 93.58 ± 1.02 0.016∗ 98.95 ± 0.68 104.34 ± 0.84 < 0.001∗∗∗
Calcium 75.27 ± 1.00 77.70 ± 1.00 0.094 65.15 ± 1.08 67.68 ± 1.45 0.167 73.27 ± 0.71 75.02 ± 0.84 0.103
Phosphorus 170.66 ± 1.30 175.12 ± 1.33 0.019∗ 139.28 ± 1.17 144.61 ± 1.64 0.013∗ 162.08 ± 0.90 165.77 ± 1.10 0.007∗∗
Iron 166.79 ± 2.03 174.80 ± 1.85 0.002∗∗ 124.87 ± 1.79 130.47 ± 2.57 0.073 152.25 ± 1.59 156.13 ± 1.62 0.056

1) % based on KDRIs (2010), EER for energy, RI for others 2) Mean ± SD 3) Adjusted for age and energy intake, except for energy 4) Adjusted for sex, age and energy intake, except for energy ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by complex samples general linear model t-test

Table 7.
Nutrition adequacy ratio (NAR) and mean adequacy ratio (MAR) of the subjects by sex
Variables Male (n = 892)   Female (n = 858)   Total (n = 1,750)  
Blue-collar (n = 539) White-collar (n = 353) p-value 2) Blue-collar (n = 532) White-collar (n = 326) p-value Blue-collar (n = 1,071) White-collar (n = 679) p-value 3)
NAR                  
Energy 0.91 ± 0.011) 0.90 ± 0.01 0.322 0.87 ± 0.01 0.87 ± 0.01 0.836 0.89 ± 0.00 0.89 ± 0.01 0.591
Protein 0.95 ± 0.00 0.97 ± 0.00 0.013∗ 0.94 ± 0.01 0.95 ± 0.01 0.289 0.95 ± 0.00 0.97 ± 0.00 0.003∗∗
Vitamin A 0.77 ± 0.01 0.80 ± 0.01 0.065 0.81 ± 0.01 0.85 ± 0.01 0.010∗ 0.81 ± 0.01 0.84 ± 0.01 0.002∗∗
Vitamin C 0.77 ± 0.01 0.83 ± 0.01 0.001∗∗ 0.81 ± 0.01 0.89 ± 0.01 < 0.001∗∗∗ 0.81 ± 0.01 0.87 ± 0.01 < 0.001∗∗∗
Vitamin B1 0.97 ± 0.00 0.99 ± 0.00 0.003∗∗ 0.98 ± 0.00 0.98 ± 0.00 0.457 0.98 ± 0.00 0.99 ± 0.00 0.023∗
Vitamin B2 0.82 ± 0.01 0.84 ± 0.01 0.077 0.83 ± 0.01 0.86 ± 0.01 0.020∗ 0.84 ± 0.01 0.87 ± 0.01 0.003∗∗
Niacin 0.84 ± 0.01 0.86 ± 0.01 0.018∗ 0.79 ± 0.01 0.82 ± 0.01 0.008∗∗ 0.83 ± 0.00 0.86 ± 0.01 < 0.001∗∗∗
Calcium 0.70 ± 0.01 0.72 ± 0.01 0.185 0.62 ± 0.01 0.65 ± 0.01 0.049∗ 0.68 ± 0.01 0.70 ± 0.01 0.023∗
Phosphorus 0.98 ± 0.00 0.99 ± 0.00 0.007∗∗ 0.95 ± 0.00 0.96 ± 0.01 0.217 0.97 ± 0.00 0.98 ± 0.00 0.008∗∗
Iron 0.97 ± 0.00 0.99 ± 0.00 0.009∗∗ 0.90 ± 0.01 0.91 ± 0.01 0.165 0.94 ± 0.00 0.95 ± 0.00 0.122
MAR 0.87 ± 0.00 0.89 ± 0.00 0.007∗∗ 0.85 ± 0.00 0.88 ± 0.01 0.003∗∗ 0.87 ± 0.00 0.89 ± 0.00 < 0.001∗∗∗

1) Mean ± SD 2) Adjusted for age and energy intake, except for energy 3) Adjusted for sex, age and energy intake, except for energy ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by complex samples general linear model t-test

TOOLS
Similar articles