Journal List > J Nutr Health > v.50(3) > 1081499

Ham, Jun, Kang, Shin, Wie, Baik, and Joung: Association of total dietary antioxidant capacity with oxidative stress and metabolic markers among patients with metabolic syndrome∗

Abstract

Purpose

This study aimed to investigate the association of total dietary antioxidant capacity (TAC) with oxidative stress and metabolic markers among patients with metabolic syndrome according to gender. Methods: A total of 346 subjects aged 30∼59 years with two or more risk factors of metabolic syndrome were recruited from a general hospital near Seoul in South Korea between 2010 and 2012 based on data from the medical checkup. Biochemical indices for oxidative stress and metabolic markers were measured. Food consumption data from 3-day food records were linked with the antioxidant capacity database for commonly consumed Korean foods to estimate individual's TAC. Results: Average dietary TAC of the study subjects was 132.0 mg VCE/d/1,000 kcal in men and 196.4 mg VCE/d/1,000 kcal in women. Levels of γ-glutamyltransferase (GGT), systolic blood pressure, diastolic blood pressure, and blood triglycerides were reduced significantly according to increasing TAC in men, but there was no significant trend in women. Intakes of total flavonoids and carotenoids were significantly negatively correlated with GGT (p < 0.05) and d-ROMs (p < 0.01) in men, whereas those of α-tocopherol (p < 0.05) and γ-tocopherol (p < 0.05) were positively correlated with biological antioxidant potential (BAP) in women. The odds ratio of high oxidative stress indices and abnormal metabolic markers according to TAC level were not significant in either men or women. Conclusion: The results show that dietary TAC was partially associated with oxidative stress and metabolic markers among patients with metabolic syndrome. Further research is required for elucidating the association between dietary TAC and incidence of metabolic syndrome and chronic diseases within a large population in prospective studies.

References

1. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112(17):2735–2752.
2. Kang JS, Kang HS, Yun EK, Choi HR. Factors influencing health behavior compliance of patients with metabolic syndrome. Korean J Adult Nurs. 2012; 24(2):191–199.
crossref
3. Kang Y, Kim J. Soft drink consumption is associated with increased incidence of the metabolic syndrome only in women. Br J Nutr. 2017; 117(2):315–324.
crossref
4. Lee CJ, Joung H. Milk intake is associated with metabolic syndrome: using data from the Korea National Health and Nutrition Examination Survey 2007∼2010. Korean J Community Nutr. 2012; 17(6):795–804.
5. Sabaté J, Wien M. A perspective on vegetarian dietary patterns and risk of metabolic syndrome. Br J Nutr. 2015; 113(Suppl 2):S136–S143.
crossref
6. Hong S, Song Y, Lee KH, Lee HS, Lee M, Jee SH, Joung H. A fruit and dairy dietary pattern is associated with a reduced risk of metabolic syndrome. Metabolism. 2012; 61(6):883–890.
crossref
7. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC. Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am J Clin Nutr. 2007; 85(3):910–918.
crossref
8. Song S, Kim EK, Hong S, Shin S, Song Y, Baik HW, Joung H, Paik HY. Low consumption of fruits and dairy foods is associated with metabolic syndrome in Korean adults from outpatient clinics in and near Seoul. Nutr Res Pract. 2015; 9(5):554–562.
crossref
9. Chung S, Ha K, Lee HS, Kim CI, Joung H, Paik HY, Song Y. Soft drink consumption is positively associated with metabolic syndrome risk factors only in Korean women: data from the 2007–2011 Korea National Health and Nutrition Examination Survey. Metabolism. 2015; 64(11):1477–1484.
crossref
10. Block G. The data support a role for antioxidants in reducing cancer risk. Nutr Rev. 1992; 50(7):207–213.
crossref
11. Chen J, He J, Hamm L, Batuman V, Whelton PK. Serum antioxidant vitamins and blood pressure in the United States population. Hypertension. 2002; 40(6):810–816.
crossref
12. Diaz MN, Frei B, Vita JA, Keaney JF Jr. Antioxidants and atherosclerotic heart disease. N Engl J Med. 1997; 337(6):408–416.
crossref
13. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015; 6(2):109–120.
crossref
14. Hirashima O, Kawano H, Motoyama T, Hirai N, Ohgushi M, Kugiyama K, Ogawa H, Yasue H. Improvement of endothelial function and insulin sensitivity with vitamin C in patients with coronary spastic angina: possible role of reactive oxygen species. J Am Coll Cardiol. 2000; 35(7):1860–1866.
15. Som S, Basu S, Mukherjee D, Deb S, Choudhury PR, Mukherjee S, Chatterjee SN, Chatterjee IB. Ascorbic acid metabolism in diabetes mellitus. Metabolism. 1981; 30(6):572–577.
crossref
16. Van De Wier B, Koek GH, Bast A, Haenen GR. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr. 2017; 57(4):834–855.
crossref
17. Kim JH, Baik HW, Yoon YS, Joung HJ, Park JS, Park SJ, Jang EJ, Park SW, Kim SJ, Kim MJ, Jeon DO, Cho HJ, Lee SJ, Im SG, Jang SK. Measurement of antioxidant capacity using the biological antioxidant potential test and its role as a predictive marker of metabolic syndrome. Korean J Intern Med. 2014; 29(1):31–39.
crossref
18. Bulusu S, Sharma M. What does serum γ-glutamyltransferase tell us as a cardiometabolic risk marker? Ann Clin Biochem. 2016; 53(Pt 3):312–332.
crossref
19. Mun JH, Lee SJ, Park JD. The risk factors of metabolic syndrome and its relation with γ-GTP in steel-mill workers. Korean J Occup Environ Med. 2007; 19(1):17–25.
20. Tamaki N, Tomofuji T, Maruyama T, Ekuni D, Yamanaka R, Takeuchi N, Yamamoto T. Relationship between periodontal condition and plasma reactive oxygen metabolites in patients in the maintenance phase of periodontal treatment. J Periodontol. 2008; 79(11):2136–2142.
crossref
21. Akçakaya H, Tok S, Dal F, Cinar SA, Nurten R. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells. Cell Biol Int. 2017; 41(3):309–319.
crossref
22. Jacob RA. The integrated antioxidant system. Nutr Res. 1995; 15(5):755–766.
crossref
23. Jun S, Shin S, Joung H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br J Nutr. 2016; 115(3):480–489.
crossref
24. Jun S, Hong E, Joung H. Flavonoid intake according to food security in Korean adults: based on the Korea National Health and Nutrition Examination Survey 2007∼2012. J Nutr Health. 2015; 48(6):507–518.
crossref
25. Kim SA, Jun S, Joung H. Estimated dietary intake of vitamin A in Korean adults: based on the Korea National Health and Nutrition Examination Survey 2007∼2012. J Nutr Health. 2016; 49(4):258–268.
crossref
26. Kim SA, Jun S, Joung H. Estimated dietary flavonoids intake of Korean adolescent: based on the Korea National Health and Nutrition Examination Survey 2007∼2012. J Nutr Health. 2015; 48(6):496–506.
crossref
27. Cocate PG, Natali AJ, Alfenas RC, de Oliveira A, dos Santos EC, Hermsdorff HH. Carotenoid consumption is related to lower lipid oxidation and DNA damage in middle-aged men. Br J Nutr. 2015; 114(2):257–264.
crossref
28. Paschalis V, Theodorou AA, Kyparos A, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Nikolaidis MG. Low vitamin C values are linked with decreased physical performance and increased oxidative stress: reversal by vitamin C supplementation. Eur J Nutr. 2016; 55(1):45–53.
crossref
29. Yang M, Chung SJ, Chung CE, Kim DO, Song WO, Koo SI, Chun OK. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011; 106(2):254–263.
crossref
30. Godala MM, Materek-Kuśmierkiewicz I, Moczulski D, Rutkowski M, Szatko F, Gaszyńska E, Tokarski S, Kowalski J. Lower plasma levels of antioxidant vitamins in patients with metabolic syndrome: a case control study. Adv Clin Exp Med. 2016; 25(4):689–700.
crossref
31. Ishikawa S, Kayaba K, Gotoh T, Nakamura Y, Kajii E. Metabolic syndrome and C-reactive protein in the general population: JMS Cohort Study. Circ J. 2007; 71(1):26–31.
32. Lee S, Park HS, Kim SM, Kwon HS, Kim DY, Kim DJ, Cho GJ, Han JH, Kim SR, Park CY, Oh SJ, Lee CB, Kim KS, Oh SW, Kim YS, Choi WH, Yoo HJ. Cut-off points of waist circumference for defining abdominal obesity in the Korean population. Korean J Obes. 2006; 15(1):1–9.
33. Jun S, Chun OK, Joung H. Estimation of dietary total antioxidant capacity of Korean adults. Eur J Nutr. Forthcoming. 2017.
34. Diacron International s.r.l. (IT). d-ROMs Test [Internet]. Grosseto: Diacron International s.r.l.;; [cited 2017 Apr 5]. Available from:. http://www.diacron.com/index.php/en/products/kits-carratelli-panel/d-roms-test.
35. Diacron International s.r.l. (IT). BAP Test [Internet]. Grosseto: Diacron International s.r.l.;; [cited 2017 Apr 5]. Available from:. http://www.diacron.com/index.php/en/products/kits-carratelli-panel/bap-test.
36. Lee K, Han J, Kim SG. Increasing risk of diabetes mellitus according to liver function alterations in electronic workers. J Diabetes Investig. 2014; 5(6):671–676.
crossref
37. World Health Organization. C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers of micronutrient status [Internet]. Geneva: World Health Organization;2014. [cited 2017 Jan 2]. Available from:. http://apps.who.int/iris/bitstream/10665/133708/1/WHO_NMH_NHD_EPG_14.7_eng.pdf.
38. Simão AN, Dichi JB, Barbosa DS, Cecchini R, Dichi I. Influence of uric acid and gamma-glutamyltransferase on total antioxidant capacity and oxidative stress in patients with metabolic syndrome. Nutrition. 2008; 24(7–8):675–681.
39. Demirbag R, Yilmaz R, Gur M, Celik H, Guzel S, Selek S, Kocy-igit A. DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements. Int J Clin Pract. 2006; 60(10):1187–1193.
crossref
40. Faienza MF, Francavilla R, Goffredo R, Ventura A, Marzano F, Panzarino G, Marinelli G, Cavallo L, Di Bitonto G. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm Res Paediatr. 2012; 78(3):158–164.
crossref
41. Skalicky J, Muzakova V, Kandar R, Meloun M, Rousar T. Oxidative stress and metabolic syndrome in obese adults with and without controlled diet restriction. Bratisl Lek Listy. 2009; 110(3):152–157.
42. Puchau B, Zulet MA, de Echávarri AG, Hermsdorff HH, Martínez JA. Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition. 2010; 26(5):534–541.
crossref
43. Gregório BM, De Souza DB, de Morais Nascimento FA, Pereira LM, Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr Pharm Des. 2016; 22(7):859–869.
44. Han GM, Meza JL, Soliman GA, Islam KM, Watanabe-Galloway S. Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr Res. 2016; 36(5):402–407.
crossref

Table 1.
General characteristics of the study subjects
Variables1) Total Men Women p value
n 346 172 174  
Age        
30 ∼ 39 y 68 (19.7) 48 (27.9) 20 (11.5)  
40 ∼ 49 y 135 (39.0) 68 (39.5) 67 (38.5) 0.0001
50 ∼ 59 y 143 (41.3) 56 (32.6) 87 (50.0)  
Education level        
≤ Middle school 39 (11.3) 4 (2.3) 35 (20.1)  
High school 93 (26.9) 40 (23.3) 53 (30.5) < 0.0001
College or more 214 (61.8) 128 (74.4) 86 (49.4)  
Monthly income        
< 1 million won 30 (8.7) 7 (4.1) 23 (13.3)  
1 ∼ 2.99 million won 79 (22.9) 31 (18.0) 48 (27.8)  
3 ∼ 4.99 million won 122 (35.4) 65 (37.8) 57 (33.0) 0.0005
≥ 5 million won 114 (33.0) 69 (40.1) 45 (26.0)  
Alcohol consumption2)        
< 1 time a month 103 (29.9) 17 (9.9) 86 (49.7)  
Regular 174 (50.6) 95 (55.6) 79 (45.7) < 0.0001
Heavy 67 (19.5) 59 (34.5) 8 (4.6)  
Smoking status        
Nonsmoker 190 (55.2) 29 (17.0) 161 (93.1)  
Previous smoker 81 (23.5) 72 (42.1) 9 (5.2) < 0.0001
Current smoker 73 (21.2) 70 (40.9) 3 (1.7)  
Physical activity3)        
Active 71 (20.5) 41 (23.8) 30 (17.2) 0.1288
Inactive 275 (79.5) 131 (76.2) 144 (82.7)
Obesity4) 220 (63.6) 122 (70.9) 98 (56.3) 0.0048
Metabolic markers5)        
Abdominal obesity 232 (67.1) 111 (64.5) 121 (69.5) 0.3220
Hypertension 259 (74.9) 143 (83.1) 116 (66.7) 0.0004
Hyperglycemia 158 (45.7) 99 (57.6) 59 (33.9) < 0.0001
Hypertriglyceridemia 199 (57.5) 123 (71.5) 76 (43.7) < 0.0001
Low HDL-cholesterol 125 (36.1) 43 (25.0) 82 (47.1) < 0.0001

1) Data are presented in number (%). The numbers of missing values were respectively 1, 2, and 2 for monthly income, alcohol consumption, and smoking status.

2) Regular: drinking at least once a month in average, heavy: drinking more than 7 glasses (men) or 5 glasses (women) at least twice a week

3) Active: person who performed vigorous-intensity activities for more than 20 minutes once at least 3 days a week or intermediate-intensity activities for more than 30 minutes once at least 5 days a week, inactive: person who is not active

4) Body mass index ≥ 25 kg/m2) Abdominal obesity: waist circumference ≥ 90 cm for men and ≥ 85 cm for women, hypertension: systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg, hyperglycemia: fasting blood sugar ≥ 100 mg/dL, hypertriglyceridemia: blood triglyceride ≥ 150 mg/dL, low HDL-cholesterol: blood HDL-cholesterol ≤ 40 mg/dL for men and ≤ 50 mg/dL for women

Table 2.
Oxidative stress and metabolic markers by tertiles of total dietary antioxidant capacity density among the study subjects
  Men   Women
Variables1) Total T1 T2 T3 p for trend2) Total T1 T2 T3 p for trend2) p value
n 172 57 58 57   174 58 58 58    
TAC (mg VCE/d/1,000 kcal)                     < 0.0001
mean ± SD 132.0 ± 89.2 58.6 ± 17.6 108.9 ± 14.3 229.0 ± 90.3   196.4 ± 124.3 91.5 ± 26.2 163.0 ± 22.3 334.6 ± 118.0  
range (15.9, 491.8) (15.9, 85.3) (85.9, 134.9) (136.1, 491.8)   (34.9, 675.4) (34.9, 133.7) (134.4, 219.3) (222.4, 675.4)  
median 109.1 57.8 109.1 198.2   157.0 94.9 157.0 287.8    
Oxidative stress indices3)                      
d-ROMs (CARR U) 310.9 ± 51.5 316.6 ± 54.1 305.0 ± 50.8 311.1 ± 49.9 0.5627 353.3 ± 55.6 350.9 ± 52.5 365.6 ± 65.4 343.5 ± 45.9 0.8942 < 0.0001
BAP (μmol/L) 1,964.4 ± 264.7 1,979.3 ± 265.4 1,905.8 ± 289.7 2,009.1 ± 228.6 0.3180 1,938.6 ± 212.2 1,900.8 ± 188.0 1,988.6 ± 200.4 1,926.4 ± 238.7 0.6855 0.3185
CRP (mg/L) 1.3 ± 1.8 1.3 ± 1.8 1.2 ± 1.9 1.4 ± 1.8 0.0802 1.2 ± 1.4 1.3 ± 1.6 1.3 ± 1.4 1.1 ± 1.3 0.5172 0.7628
GGT (IU/L) 57.5 ± 52.0 66.0 ± 64.5 60.4 ± 54.0 46.0 ± 30.3 0.0176 23.6 ± 16.2 23.3 ± 19.1 21.7 ± 9.5 25.7 ± 18.3 0.1237 < 0.0001
Metabolic markers3)                      
WC (cm) 91.74 ± 6.64 91.76 ± 6.68 91.67 ± 6.62 91.81 ± 6.74 0.7641 86.96 ± 8.51 87.85 ± 9.75 87.79 ± 8.72 85.24 ± 6.66 0.1045 < 0.0001
SBP (mmHg) 139.8 ± 15.4 142.7 ± 17.4 139.5 ± 14.9 137.0 ± 13.1 0.0232 128.5 ± 17.0 128.7 ± 18.2 126.8 ± 16.1 130.1 ± 16.6 0.3764 < 0.0001
DBP (mmHg) 91.8 ± 11.7 93.5 ± 12.0 92.2 ± 12.1 89.6 ± 10.8 0.0464 84.7 ± 10.6 85.4 ± 11.8 84.1 ± 9.9 84.5 ± 10.3 0.7495 < 0.0001
FBS (mg/dL) 105.2 ± 18.5 103.1 ± 11.9 102.1 ± 13.1 110.6 ± 26.2 0.2553 98.7 ± 14.6 99.1 ± 17.4 97.4 ± 12.5 99.4 ± 13.7 0.2446 0.0003
TG (mg/dL) 244.9 ± 175.8 252.4 ± 173.9 289.5 ± 221.4 191.9 ± 96.3 0.0244 152.7 ± 81.6 154.0 ± 76.6 154.3 ± 88.0 149.7 ± 81.2 0.8635 < 0.0001
HDL (mg/dL) 47.4 ± 10.8 48.2 ± 9.7 46.2 ± 10.3 47.9 ± 12.4 0.8340 52.9 ± 11.5 51.1 ± 11.0 55.6 ± 12.4 51.9 ± 10.6 0.2661 < 0.0001
LDL (mg/dL) 129.2 ± 35.3 134.5 ± 37.7 122.2 ± 36.7 131.0 ± 30.7 0.8707 131.3 ± 38.6 126.8 ± 32.9 132.8 ± 35.9 134.2 ± 46.2 0.7031 0.5999

1) TAC, total antioxidant capacity density; d-ROMs, diacron-reactive oxygen metabolites test; BAP, biological antioxidant potential test; CRP, high-sensitivity C-reactive protein; GGT, γ-glutamyltransferase; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; TG, triglyceride; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol 2) p for trend by generalized linear model adjusted for age, education, monthly income, alcohol consumption, smoking status, and physical activity 3) Data are presented in means ± SD.

Table 3.
Spearman correlation coefficient between antioxidant intake density and oxidative stress indices of the study subjects
Antioxidants Men Women
d-ROMs BAP CRP GGT d-ROMs BAP CRP GGT
Flavonoids –0.0181 0.0649 0.0766 –0.1875∗ –0.0668 0.0688 –0.0018 0.0682
Flavonol 0.0641 0.0663 0.0244 0.0429 –0.0054 0.0192 0.0043 –0.0342
Flavone –0.0679 –0.0671 0.0002 0.0293 0.0291 0.0562 0.0138 –0.0380
Flavanone –0.1764∗ 0.0526 –0.0107 –0.2317∗∗ 0.0675 0.0454 0.0514 –0.0693
Flavanol monomer –0.0403 0.1335 0.0174 –0.2101∗∗ –0.0403 0.1322 0.0948 0.0863
Theaflavin 0.0795 0.0628 –0.0029 –0.0948 –0.1174 0.0569 –0.0704 –0.0107
Anthocyanidin 0.0149 0.1261 0.0617 –0.2184∗∗ –0.0442 –0.0075 0.0558 0.0720
Isoflavone 0.0316 –0.0446 0.0828 –0.0364 –0.0506 0.0449 –0.0214 0.1103
Proanthocyanidin –0.0760 0.0376 –0.0601 –0.1902∗ 0.0426 0.1245 –0.0190 0.0665
Carotenoids –0.2058∗∗ –0.0643 –0.0018 –0.0756 0.0149 0.0710 –0.0446 –0.0378
α-Carotene –0.1614∗ –0.0142 –0.0765 –0.1279 –0.0288 0.0726 –0.0548 –0.0461
β-Carotene –0.2110∗∗ –0.0088 –0.1025 –0.0957 0.0175 0.0552 –0.0130 –0.0164
Lycopene –0.1223 –0.0869 –0.0685 –0.0816 0.0451 0.0767 –0.0445 0.0184
β-Cryptoxanthin –0.1020 –0.0809 0.0523 –0.0215 0.0518 –0.0922 0.0923 0.0787
Lutein/Zeaxanthin –0.2308∗∗ –0.0278 0.0272 –0.1487 –0.0745 0.1124 –0.0069 0.0546
Retinol –0.0708 0.0037 –0.1536∗ –0.0655 –0.0610 0.0275 –0.1165 –0.0434
Vitamin C –0.1462 –0.0177 0.0251 –0.1293 0.0681 0.0355 0.0205 –0.0422
Vitamin E –0.0069 –0.0211 –0.1013 –0.0376 0.0076 0.280 0.0028 0.0057
α-Tocopherol 0.0837 0.0941 –0.0756 –0.0004 0.0813 0.1630∗ 0.0027 0.0049
β-Tocopherol –0.1476 –0.0760 –0.0867 0.0630 0.0036 –0.0430 0.0366 –0.0235
γ-Tocopherol –0.0023 0.0952 –0.1147 –0.1516∗ –0.1455 0.1609∗ –0.1264 0.0385
δ-Tocopherol –0.0686 –0.1683∗ –0.0508 0.1143 0.0731 –0.0049 0.0921 –0.0649
TAC1) –0.0644 0.0492 0.0583 –0.1791∗ –0.0095 0.0612 –0.0040 0.0701

1) Total dietary antioxidant capacity density ∗p < 0.05, ∗∗p < 0.01

Table 4.
Odds ratio of high oxidative stress indices and abnormal metabolic markers by tertiles of total dietary antioxidant capacity density among the study subjects
Variables1) Men Women
  T1   T2   T3 p for T1   T2   T3 p for
Adjusted Adjusted 95% Adjusted 95% trend2) Adjusted Adjusted 95% Adjusted 95% trend2)  
OR OR CI OR CI   OR OR CI OR CI    
Oxidative stress indices3)                        
d-ROMs 1.00 1.23 (0.58, 2.58) 0.88 (0.37, 2.08) 0.8886 1.00 0.51 (0.12, 2.05) 1.03 (0.24, 4.35) 0.7158
BAP 1.00 0.82 (0.30, 2.22) 0.47 (0.15, 1.47) 0.2149 1.00 0.21 (0.02, 1.96) 0.30 (0.03, 2.68) 0.4495
CRP 1.00 1.75 (0.08, 38.79) 4.35 (0.02, 99.47) 0.3535 1.00 0.14 (0.01, 1.96) 0.37 (0.04, 3.25) 0.4359
GGT 1.00 0.68 (0.30, 1.58) 0.33 (0.11, 1.02) 0.0509 1.00 0.18 (0.05, 0.67) 0.55 (0.19, 1.54) 0.4755
Metabolic markers3)                        
Abdominal obesity 1.00 0.86 (0.40, 1.84) 1.17 (0.48, 2.88) 0.8295 1.00 1.64 (0.61, 4.38) 0.71 (0.29, 1.75) 0.2584
Hypertension 1.00 1.04 (0.37, 2.94) 0.43 (0.14, 1.28) 0.1673 1.00 0.98 (0.39, 2.46) 1.03 (0.41, 2.57) 0.9288
Hyperglycemia 1.00 1.07 (0.51, 2.26) 0.88 (0.37, 2.11) 0.8375 1.00 1.33 (0.50, 3.49) 1.45 (0.57, 3.72) 0.4600
Hypertriglyceridemia 1.00 1.12 (0.48, 2.57) 0.56 (0.23, 1.38) 0.2717 1.00 0.54 (0.23, 1.28) 0.59 (0.25, 1.37) 0.2904
Low HDL-cholesterol 1.00 1.62 (0.72, 3.67) 0.88 (0.32, 2.44) 0.9581 1.00 0.69 (0.28, 1.68) 1.22 (0.52, 2.87) 0.4680

1) Adjusted for age, education, monthly income, alcohol consumption, smoking status, and physical activity 2) p for trend by logistic regression 3) d-ROMs ≥ 300 CARR U, BAP ≤ 2,200 μmol/L, CRP ≥ 5 mg/L, GGT ≥ 63 IU/L for men and ≥ 35 IU/L for women, abdominal obesity: waist circumference ≥ 90 cm for men and ≥ 85 cm for women, hypertension: systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg, hyperglycemia: fasting blood sugar ≥ 100 mg/dL, hypertriglyceridemia: blood triglyceride ≥ 150 mg/dL, low HDL-cholesterol: blood HDL-cholesterol ≤ 40 mg/dL for men and ≤ 50 mg/dL for women

TOOLS
Similar articles