Abstract
ABSTRACT Purpose: This study was conducted in order to investigate the nutrient and food intake status, and dietary quality in Korean adults according to abdominal obesity based on waist circumference. Methods: We analyzed data from the combined 2010∼2012 KNHANES (Korean National Health and Nutrition Examination Survey). The analysis included 6,974 adults aged 40 to 64 years. In this study, according to abdominal obesity based on waist circumference (male ≥ 90 cm, female ≥ 85 cm), we classified the subjects into the obesity group (male, n = 775, female, n = 1,113) and control group (male, n = 2,038, female, n = 3,048). The nutrient and food group intake, ND (nutrient density), NAR (nutrient adequacy ratio), MAR (mean adequacy ratio), INQ (index of nutritional quality), DDS (dietary diversity score), and DVS (dietary variety score) were analyzed using data from the 24-recall method. Results: For male, no significant difference in quality index of the diet was observed between the obesity group and the normal group. In female, in diet quality (ND, NAR, and INQ), vitamin B2 (ND, NAR, and INQ) calcium (NAR), phosphorous (ND, INQ) and potassium (ND) of the obesity group was significantly lower than those of the control group. DDS and DVS in the obesity group (3.57, 30.95) were significantly lower than those of the control group (3.68, 32.84) (p = 0.0043, 0.0002). DVS (DVS ≥ 39.9) showed association with lower risk of waist obesity in a logistic regression model after adjustments for multiple confounding factors including age, education, income, alcohol intake frequency, smoking, physical activity, energy intake, and body mass index (OR: 0.616, 95% CI: 0.420–0.903). Conclusion: In conclusion, females with abdominal obesity had lower micronutrient intake quality, DVS than those of the control group. In Korean females, food intake variety can adversely affect waist circumference.
References
1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3). Cheongwon: Korea Centers for Disease Control and Prevention;2013.
2. Kang JH, Jeong BG, Cho YG, Song HR, Kim KA. Medical expenditure attributable to overweight and obesity in adults with hypertension, diabetes and dyslipidemia: evidence from Korea National Health and Nutrition Examination Survey Data and Korea National Health Corporation Data. J Agric Med Community Health. 2010; 35(1):77–88.
3. Kuk JL, Lee S, Heymsfield SB, Ross R. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr. 2005; 81(6):1330–1334.
4. Lim U, Ernst T, Buchthal SD, Latch M, Albright CL, Wilkens LR, Kolonel LN, Murphy SP, Chang L, Novotny R, Le Marchand L. Asian women have greater abdominal and visceral adiposity than Caucasian women with similar body mass index. Nutr Diabetes. 2011; 1:e6.
5. Luo W, Guo Z, Hu X, Zhou Z, Wu M, Zhang L, Liu J. 2 years change of waist circumference and body mass index and associations with type 2 diabetes mellitus in cohort populations. Obes Res Clin Pract. 2013; 7(4):e290–e296.
6. Mohammadifard N, Nazem M, Sarrafzadegan N, Nouri F, Sajjadi F, Maghroun M, Alikhasi H. Body mass index, waist-circumference and cardiovascular disease risk factors in Iranian adults: Isfahan healthy heart program. J Health Popul Nutr. 2013; 31(3):388–397.
7. Aleixandre A, Miguel M. Dietary fiber in the prevention and treatment of metabolic syndrome: a review. Crit Rev Food Sci Nutr. 2008; 48(10):905–912.
8. Houston DK, Nicklas BJ, Zizza CA. Weighty concerns: the growing prevalence of obesity among older adults. J Am Diet Assoc. 2009; 109(11):1886–1895.
9. Astrup A, Kristensen M, Gregersen NT, Belza A, Lorenzen JK, Due A, Larsen TM. Can bioactive foods affect obesity? Ann N Y Acad Sci. 2010; 1190:25–41.
10. Martínez-Augustin O, Aguilera CM, Gil-Campos M, Sánchez de Medina F, Gil A. Bioactive anti-obesity food components. Int J Vitam Nutr Res. 2012; 82(3):148–156.
11. Drewnowski A, Henderson SA, Shore AB, Fischler C, Preziosi P, Hercberg S. Diet quality and dietary diversity in France: implications for the French paradox. J Am Diet Assoc. 1996; 96(7):663–669.
12. Pate RR, Taverno Ross SE, Liese AD, Dowda M. Associations among physical activity, diet quality, and weight status in U.S. adults. Med Sci Sports Exerc. Forthcoming 2014. adults. Med Sci Sports Exerc. Forthcoming. 2014.
13. Lassale C, Galan P, Julia C, Fezeu L, Hercberg S, Kesse-Guyot E. Association between adherence to nutritional guidelines, the metabolic syndrome and adiposity markers in a French adult general population. PLoS One. 2013; 8(10):): e76349.
14. Jennings A, Welch A, van Sluijs EM, Griffin SJ, Cassidy A. Diet quality is independently associated with weight status in children aged 9–10 years. J Nutr. 2011; 141(3):453–459.
15. Bae YJ. Evaluation of nutrient and food intake status, and dietary quality in Korean female adults according to obesity: based on 2007–2009 Korean National Health and Nutrition Examination Survey. Korean J Nutr. 2012; 45(2):140–149.
16. Walls HL, Magliano DJ, McNeil JJ, Stevenson C, Ademi Z, Shaw J, Peeters A. Predictors of increasing waist circumference in an Australian population. Public Health Nutr. 2011; 14(5):870–881.
17. Arabshahi S, van der Pols JC, Williams GM, Marks GC, Lahmann PH. Diet quality and change in anthropometric measures: 15-year longitudinal study in Australian adults. Br J Nutr. 2012; 107(9):1376–1385.
18. Azadbakht L, Akbari F, Esmaillzadeh A. Diet quality among Iranian adolescents needs improvement. Public Health Nutr. 2006. 1–7.
19. Jayawardena R, Byrne NM, Soares MJ, Katulanda P, Yadav B, Hills AP. High dietary diversity is associated with obesity in Sri Lankan adults: an evaluation of three dietary scores. BMC Public Health. 2013; 13:314.
20. Lee S, Park HS, Kim SM, Kwon HS, Kim DY, Kim DJ, Cho GJ, Han JH, Kim SR, Park CY, Oh SJ, Lee CB, Kim KS, Oh SW, Kim YS, Choi WH, Yoo HJ. Cut-off points of waist circumference for defining abdominal obesity in the Korean population. Korean J Obes. 2006; 15(1):1–9.
22. Kant AK. Indexes of overall diet quality: a review. J Am Diet Assoc. 1996; 96(8):785–791.
23. Krebs-Smith SM, Smiciklas-Wright H, Guthrie HA, Krebs-Smith J. The effects of variety in food choices on dietary quality. J Am Diet Assoc. 1987; 87(7):897–903.
24. Sim KW, Lee SH, Lee HS. The relationship between body mass index and morbidity in Korea. J Korean Soc Study Obes. 2001; 10(2):147–155.
25. Lee RD, Nieman DC. Nutritional assessment. 5th edition.Dubuque (IA): McGraw-Hill;2010.
26. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr. 2004; 79(3):379–384.
27. Mamtani M, Kulkarni H, Dyer TD, Almasy L, Mahaney MC, Duggirala R, Comuzzie AG, Blangero J, Curran JE. Waist circumference independently associates with the risk of insulin resistance and type 2 diabetes in mexican american families. PLoS One. 2013; 8(3):): e59153.
28. Gröber-Grätz D, Widhalm K, de Zwaan M, Reinehr T, Blüher S, Schwab KO, Wiegand S, Holl RW. Body mass index or waist circumference: which is the better predictor for hypertension and dyslipidemia in overweight/obese children and adolescents? Association of cardiovascular risk related to body mass index or waist circumference. Horm Res Paediatr. 2013; 80(3):170–178.
29. Lee YE, Park JE, Hwang JY, Kim WY. Comparison of health risks according to the obesity types based upon BMI and waist circumference in Korean adults: the 1998–2005 Korean National Health and Nutrition Examination Surveys. Korean J Nutr. 2009; 42(7):631–638.
30. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002; 162(18):2074–2079.
31. Kim JH, Lee JE, Jung IK. Dietary pattern classifications and the association with general obesity and abdominal obesity in Korean women. J Acad Nutr Diet. 2012; 112(10):1550–1559.
32. Seo KH, Lee HJ, Lim BD, Choi YJ, Oh H, Yoon JS. Association of nutritional status with obesity by body mass index and waist circumference among hypertensive elderly patients. Korean J Community Nutr. 2009; 14(6):831–845.
33. Shin D, Joh HK, Kim KH, Park SM. Benefits of potassium intake on metabolic syndrome: The fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Atherosclerosis. 2013; 230(1):80–85.
34. World Health Organization (CH). Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. WHO technical report series 916. Geneva: World Health Organization;2003.
35. Azadbakht L, Mirmiran P, Azizi F. Dietary diversity score is favorably associated with the metabolic syndrome in Tehranian adults. Int J Obes (Lond). 2005; 29(11):1361–1367.
36. Kim SH, Kim JY, Ryu KA, Sohn CM. Evaluation of the dietary diversity and nutrient intakes in obese adults. Korean J Community Nutr. 2007; 12(5):583–591.
37. Lee JE, Ahn Y, Kimm K, Park C. Study on the associations of dietary variety and nutrition intake level by the number of survey days. Korean J Nutr. 2004; 37(10):908–916.
38. Gao SK, Beresford SA, Frank LL, Schreiner PJ, Burke GL, Fitzpatrick AL. Modifications to the Healthy Eating Index and its ability to predict obesity: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr. 2008; 88(1):64–69.
39. Tardivo AP, Nahas-Neto J, Nahas EA, Maesta N, Rodrigues MA, Orsatti FL. Associations between healthy eating patterns and indicators of metabolic risk in postmenopausal women. Nutr J. 2010; 9:64.
Table 1.
Variable | Male | p value | Female | p value | ||
---|---|---|---|---|---|---|
Control (n = 2,038) | Obesity (n = 775) | Control (n = 3,048) | Obesity (n = 1,113) | |||
Age (yrs) | 50.46 ± 0.181) | 50.82 ± 0.29 | 0.2782 | 49.83 ± 0.16 | 52.98 ± 0.26 | <.0001 |
BMI (kg/m2) | 23.09 ± 0.06 | 27.05 ± 0.10 | <.0001 | 22.60 ± 0.05 | 27.68 ± 0.14 | <.0001 |
<18.5 | 59 (2.61)2) | 2 (0.27) | <.0001 | 97 (3.11) | 1 (0.12) | <.0001 |
≥ 18.5 and <23 | 859 (41.92) | 15 (1.80) | 1,644 (54.30) | 25 (2.10) | ||
≥ 23 and <25 | 692 (33.03) | 118 (14.99) | 861 (27.83) | 164 (13.88) | ||
≥ 25 | 428 (22.45) | 640 (82.94) | 446 (14.76) | 923 (83.89) | ||
Waist circumference (cm) | 81.47 ± 0.15 | 95.05 ± 0.22 | <.0001 | 75.67 ± 0.14 | 91.37 ± 0.28 | <.0001 |
Metabolic parameters | ||||||
Total cholesterol (mg/dl) | 190.20 ± 1.00 | 195.94 ± 1.58 | 0.0426 | 196.92 ± 0.81 | 201.85 ± 1.26 | 0.0008 |
Triglyceride (mg/dl) | 159.04 ± 3.49 | 199.19 ± 5.67 | <.0001 | 113.76 ± 2.18 | 149.59 ± 3.81 | <.0001 |
HDL-cholesterol (mg/dl) | 46.96 ± 0.31 | 43.23 ± 0.36 | <.0001 | 52.18 ± 0.25 | 47.80 ± 0.41 | <.0001 |
Glucose (mg/dl) | 102.50 ± 0.67 | 108.64 ± 0.99 | <.0001 | 94.74 ± 0.44 | 105.64 ± 1.14 | <.0001 |
SBP (mmHg) | 121.33 ± 0.45 | 125.39 ± 0.62 | <.0001 | 117.14 ± 0.37 | 123.14 ± 0.68 | <.0001 |
DBP (mmHg) | 79.70 ± 0.31 | 83.00 ± 0.47 | <.0001 | 75.20 ± 0.24 | 78.21 ± 0.39 | <.0001 |
Breakfast skipper (%) | 156 (8.94) | 67 (10.18) | 0.4259 | 272 (10.86) | 89 (9.54) | 0.3401 |
Frequency of alcohol | ||||||
None | 301 (15.15) | 120 (13.78) | 0.0722 | 1,064 (32.41) | 455 (37.77) | 0.0733 |
<1 time/month | 383 (18.13) | 109 (14.04) | 1,251 (41.70) | 403 (38.12) | ||
2∼4 times/month | 522 (24.32) | 193 (24.98) | 507 (17.48) | 175 (16.01) | ||
≥ 2 times/week | 832 (42.38) | 353 (47.21) | 226 (8.41) | 80 (8.10) | ||
Smoking | ||||||
Non-smoker | 327 (15.74) | 107 (11.38) | 0.0328 | 2,839 (91.95) | 1,037 (91.84) | 0.9896 |
Past smoker | 895 (40.81) | 364 (43.51) | 91 (3.58) | 37 (3.70) | ||
Current smoker | 816 (43.45) | 304 (45.10) | 118 (4.47) | 39 (4.45) | ||
Physical activity | ||||||
Low | 1,124 (54.67) | 457 (58.09) | 0.3851 | 1,849 (61.50) | 684 (62.54) | 0.3220 |
Moderate | 809 (39.89) | 288 (37.26) | 1,114 (35.68) | 409 (35.61) | ||
Vigorous | 105 (5.45) | 30 (4.65) | 85 (2.82) | 20 (1.85) | ||
Education | ||||||
Elementary school | 294 (13.78) | 110 (11.75) | 0.5570 | 645 (19.58) | 453 (37.05) | <.0001 |
Middle school | 309 (15.10) | 129 (15.36) | 474 (15.53) | 228 (22.09) | ||
High school | 755 (39.38) | 264 (38.49) | 1,177 (41.37) | 319 (31.54) | ||
≥ College | 669 (31.74) | 269 (34.40) | 728 (25.52) | 106 (9.32) | ||
Household income | ||||||
Low | 202 (10.75) | 61 (7.40) | 0.0962 | 325 (11.16) | 214 (16.44) | <.0001 |
Moderate low | 474 (25.40) | 193 (26.52) | 758 (29.95) | 318 (31.32) | ||
Moderate | 627 (31.36) | 224 (30.00) | 830 (28.14) | 314 (28.67) | ||
Upper | 716 (32.49) | 283 (35.98) | 1,101 (33.75) | 262 (23.57) |
Table 2.
Variable | Male | p value | Female | p value | ||
---|---|---|---|---|---|---|
Control (n = 2,038) | Obesity (n = 775) | Control (n = 3,048) | Obesity (n = 1,113) | |||
Energy (kcal) | 2,373.00 ± 22.841) | 2,444.65 ± 35.39 | 0.0950 | 1,728.89 ± 15.02 | 1,719.05 ± 24.90 | 0.7214 |
(/1,000 kcal) | (/1,000 kcal) | |||||
Protein (g) | 35.77 ± 0.26 | 35.63 ± 0.42 | 0.7848 | 35.81 ± 0.25 | 35.10 ± 0.40 | 0.1475 |
Fat (g) | 18.22 ± 0.22 | 18.47 ± 0.35 | 0.5341 | 18.25 ± 0.21 | 17.25 ± 0.33 | 0.0113 |
Carbohydrate (g) | 159.61 ± 0.96 | 158.87 ± 1.42 | 0.6426 | 175.40 ± 0.66 | 177.45 ± 1.14 | 0.1167 |
Fiber (g) | 3.78 ± 0.06 | 4.10 ± 0.11 | 0.0083 | 4.69 ± 0.08 | 4.54 ± 0.13 | 0.2797 |
Vitamin A (ugRE) | 419.80 ± 13.41 | 406.12 ± 17.93 | 0.5505 | 539.62 ± 38.40 | 485.73 ± 18.34 | 0.1801 |
Vitamin B1 (mg) | 0.65 ± 0.01 | 0.67 ± 0.01 | 0.0772 | 0.68 ± 0.01 | 0.68 ± 0.01 | 0.7074 |
Vitamin B2 (mg) | 0.59 ± 0.01 | 0.60 ± 0.01 | 0.6743 | 0.66 ± 0.01 | 0.63 ± 0.01 | 0.0185 |
Niacin (mg) | 8.60 ± 0.07 | 8.71 ± 0.11 | 0.3840 | 8.75 ± 0.07 | 8.52 ± 0.10 | 0.0865 |
Vitamin C (mg) | 53.41 ± 1.05 | 52.52 ± 1.48 | 0.6185 | 69.94 ± 1.97 | 64.62 ± 1.85 | 0.0515 |
Calcium (mg) | 255.47 ± 3.29 | 254.57 ± 6.03 | 0.8968 | 296.56 ± 4.56 | 284.06 ± 6.83 | 0.1472 |
Phosphorous (mg) | 599.24 ± 3.64 | 593.00 ± 5.79 | 0.3630 | 632.74 ± 3.52 | 615.16 ± 5.96 | 0.0135 |
Sodium (mg) | 2,585.00 ± 31.90 | 2,621.01 ± 57.52 | 0.5948 | 2,519.29 ± 31.92 | 2,572.74 ± 48.70 | 0.3554 |
Potassium (mg) | 1,529.11 ± 13.37 | 1,551.09 ± 21.98 | 0.3906 | 1,781.72 ± 22.70 | 1,696.20 ± 23.13 | 0.0097 |
Iron (mg) | 8.11 ± 0.25 | 7.76 ± 0.21 | 0.3115 | 8.80 ± 0.15 | 8.54 ± 0.22 | 0.3360 |
Energy distribution | ||||||
% Carbohydrate | 63.84 ± 0.39 | 63.55 ± 0.57 | 0.6426 | 70.16 ± 0.26 | 70.98 ± 0.45 | 0.1167 |
% Protein | 14.31 ± 0.10 | 14.25 ± 0.17 | 0.7848 | 14.32 ± 0.98 | 14.04 ± 0.16 | 0.1475 |
% Fat | 16.40 ± 0.20 | 16.62 ± 0.32 | 0.5341 | 16.42 ± 0.19 | 15.93 ± 0.29 | 0.0113 |
Table 3.
Variable | Male | p value | Female | p value | ||
---|---|---|---|---|---|---|
Control (n = 2,038) | Obesity (n = 775) | Control (n = 3,048) | Obesity (n = 1,113) | |||
NAR | ||||||
Protein | 0.96 ± 0.001) | 0.96 ± 0.00 | 0.8415 | 0.93 ± 0.00 | 0.92 ± 0.01 | 0.1930 |
Vitamin A | 0.79 ± 0.01 | 0.79 ± 0.01 | 0.7230 | 0.78 ± 0.01 | 0.76 ± 0.01 | 0.0610 |
Vitamin B1 | 0.90 ± 0.00 | 0.92 ± 0.01 | 0.0590 | 0.84 ± 0.00 | 0.83 ± 0.01 | 0.6339 |
Vitamin B2 | 0.79 ± 0.01 | 0.79 ± 0.01 | 0.5933 | 0.77 ± 0.01 | 0.75 ± 0.01 | 0.0331 |
Niacin | 0.90 ± 0.00 | 0.91 ± 0.01 | 0.5178 | 0.85 ± 0.00 | 0.84 ± 0.01 | 0.3472 |
Vitamin C | 0.80 ± 0.01 | 0.81 ± 0.01 | 0.5734 | 0.77 ± 0.01 | 0.74 ± 0.01 | 0.0690 |
Calcium | 0.71 ± 0.01 | 0.72 ± 0.01 | 0.5786 | 0.65 ± 0.01 | 0.62 ± 0.01 | 0.0140 |
Phosphorous | 0.99 ± 0.00 | 0.99 ± 0.00 | 0.6769 | 0.96 ± 0.00 | 0.96 ± 0.01 | 0.4323 |
Iron | 0.96 ± 0.00 | 0.96 ± 0.00 | 0.6018 | 0.89 ± 0.00 | 0.88 ± 0.01 | 0.7561 |
MAR | 0.87 ± 0.00 | 0.87 ± 0.01 | 0.4308 | 0.83 ± 0.00 | 0.81 ± 0.01 | 0.0586 |
Table 4.
Variable | Male | p value | Female | p value | ||
---|---|---|---|---|---|---|
Control (n = 2,038) | Obesity (n = 775) | Control (n = 3,048) | Obesity (n = 1,113) | |||
Protein | 1.57 ± 0.011) | 1.56 ± 0.02 | 0.7787 | 1.46 ± 0.01 | 1.44 ± 0.02 | 0.2006 |
Vitamin A | 1.33 ± 0.04 | 1.28 ± 0.06 | 0.5415 | 1.60 ± 0.11 | 1.44 ± 0.05 | 0.1758 |
Vitamin B1 | 1.23 ± 0.01 | 1.27 ± 0.02 | 0.0760 | 1.14 ± 0.01 | 1.13 ± 0.01 | 0.7788 |
Vitamin B2 | 0.90 ± 0.01 | 0.91 ± 0.02 | 0.6913 | 1.01 ± 0.01 | 0.97 ± 0.01 | 0.0240 |
Niacin | 1.22 ± 0.01 | 1.24 ± 0.02 | 0.3437 | 1.15 ± 0.01 | 1.12 ± 0.01 | 0.1217 |
Vitamin C | 1.21 ± 0.02 | 1.19 ± 0.03 | 0.6056 | 1.29 ± 0.04 | 1.19 ± 0.03 | 0.0609 |
Calcium | 0.81 ± 0.01 | 0.81 ± 0.02 | 0.8867 | 0.80 ± 0.01 | 0.77 ± 0.02 | 0.1876 |
Phosphorous | 1.94 ± 0.01 | 1.92 ± 0.02 | 0.3803 | 1.66 ± 0.01 | 1.62 ± 0.02 | 0.0208 |
Iron | 1.97 ± 0.06 | 1.89 ± 0.05 | 0.3091 | 1.68 ± 0.03 | 1.62 ± 0.04 | 0.1729 |
Table 5.
Variable | Male | p value | Female | p value | ||
---|---|---|---|---|---|---|
Control (n = 2,038) | Obesity (n = 775) | Control (n = 3,048) | Obesity (n = 3,048) | |||
(g/day) | (g/day) | |||||
Total food | 1,745.43 ± 23.501) | 1,827.25 ± 38.90 | 0.0846 | 1,366.31 ± 19.09 | 1,283.01 ± 23.89 | 0.0029 |
Cereals | 347.99 ± 3.92 | 358.18 ± 7.01 | 0.1912 | 276.80 ± 3.22 | 290.23 ± 5.23 | 0.0272 |
Potato and starches | 37.91 ± 2.87 | 37.52 ± 3.59 | 0.9312 | 43.76 ± 2.47 | 38.05 ± 3.71 | 0.2108 |
Sugars and sweetners | 11.48 ± 0.65 | 12.14 ± 0.78 | 0.5217 | 7.52 ± 0.33 | 7.65 ± 0.48 | 0.8282 |
Pulses | 49.97 ± 2.34 | 44.61 ± 3.95 | 0.2363 | 35.90 ± 1.51 | 35.59 ± 3.01 | 0.9277 |
Nuts and seeds | 5.53 ± 1.02 | 12.97 ± 7.44 | 0.3675 | 5.97 ± 0.42 | 5.25 ± 0.72 | 0.3782 |
Vegetables | 406.26 ± 6.64 | 433.95 ± 11.17 | 0.0347 | 324.46 ± 6.60 | 314.87 ± 7.67 | 0.3662 |
Fungi and mushrooms | 4.71 ± 0.41 | 5.13 ± 0.76 | 0.6401 | 5.17 ± 0.38 | 3.84 ± 0.52 | 0.0447 |
Fruits | 186.66 ± 9.21 | 194.57 ± 13.49 | 0.6348 | 260.02 ± 11.95 | 219.29 ± 10.70 | 0.0020 |
Meats | 108.39 ± 4.42 | 109.95 ± 6.52 | 0.8499 | 65.02 ± 2.34 | 64.06 ± 3.66 | 0.8281 |
Eggs | 23.54 ± 1.19 | 23.54 ± 1.73 | 0.9995 | 18.73 ± 0.73 | 17.34 ± 1.21 | 0.3051 |
Fish and shellfishes | 78.51 ± 3.15 | 85.73 ± 5.22 | 0.2400 | 49.26 ± 1.72 | 43.02 ± 2.20 | 0.0318 |
Seaweeds | 5.55 ± 0.43 | 6.04 ± 0.77 | 0.5559 | 5.71 ± 0.42 | 4.95 ± 0.46 | 0.2172 |
Milks | 64.95 ± 3.58 | 58.76 ± 5.68 | 0.3649 | 85.43 ± 3.37 | 67.95 ± 4.93 | 0.0019 |
Oils and fat | 9.04 ± 0.27 | 10.33 ± 0.44 | 0.0149 | 6.38 ± 0.20 | 6.65 ± 0.38 | 0.5481 |
Beverages | 360.35 ± 16.10 | 388.17 ± 25.61 | 0.3858 | 143.46 ± 7.46 | 131.88 ± 12.38 | 0.4397 |
Seasoning | 44.28 ± 1.09 | 45.53 ± 1.76 | 0.5524 | 31.76 ± 0.78 | 32.16 ± 1.47 | 0.8115 |
Other | 0.30 ± 0.12 | 0.14 ± 0.09 | 0.2693 | 0.97 ± 0.75 | 0.23 ± 0.15 | 0.3441 |
Table 6.
Variable | Male | p value | Female | p value | ||
---|---|---|---|---|---|---|
Control (n = 2,038) | Obesity (n = 775) | Control (n = 3,048 | Obesity (n = 1,113) | |||
DDS | ||||||
Grains | 0.998 ± 0.0011) | 0.999 ± 0.001 | 0.7208 | 0.999 ± 0.001 | 0.999 ± 0.001 | 0.9829 |
Meats | 0.945 ± 0.006 | 0.930 ± 0.010 | 0.1818 | 0.902 ± 0.007 | 0.876 ± 0.011 | 0.0528 |
Vegetables | 0.997 ± 0.001 | 0.994 ± 0.003 | 0.3483 | 0.986 ± 0.003 | 0.989 ± 0.004 | 0.5467 |
Fruits | 0.542 ± 0.013 | 0.604 ± 0.020 | 0.0116 | 0.426 ± 0.012 | 0.403 ± 0.019 | 0.3127 |
Dairy | 0.277 ± 0.245 | 0.012 ± 0.019 | 0.1568 | 0.367 ± 0.012 | 0.307 ± 0.017 | 0.0033 |
Distribution | ||||||
0 | 1 (0.04)2) | − | − | − | − | <.0001 |
1 | 3 (0.11) | 2 (0.09) | 8 (0.37) | 3 (0.11) | ||
2 | 62 (2.89) | 32 (4.27) | 159 (4.74) | 95 (9.01) | ||
3 | 622 (30.97) | 210 (26.51) | 1,022 (34.48) | 438 (38.68) | ||
4 | 1,018 (49.47) | 416 (53.78) | 1,355 (43.95) | 454 (39.44) | ||
5 | 332 (16.52) | 115 (15.35) | 504 (16.46) | 123 (12.76) | ||
Mean ± SD | 3.76 ± 0.02 | 3.77 ± 0.03 | 0.7136 | 3.68 ± 0.02 | 3.57 ± 0.03 | 0.0043 |
DVS | ||||||
Mean ± SD | 33.23 ± 0.31 | 33.43 ± 0.50 | 0.7241 | 32.84 ± 0.28 | 30.95 ± 0.42 | 0.0002 |
Table 7.
Case | Control | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|---|
DDS1) | |||||
Male | |||||
Q1 (DDS ≤ 3) | 244 | 688 | 1 | 1 | 1 |
Q2 (DDS = 4) | 416 | 1,018 | 1.198 (0.956–1.501) | 1.136 (0.890–1.450) | 0.967 (0.677–1.381) |
Q3 (DDS = 5) | 115 | 332 | 1.024 (0.753–1.393) | 0.968 (0.694–1.350) | 0.843 (0.515–1.379) |
p for trend | 0.2433 | 0.4286 | 0.7783 | ||
Female | |||||
Q1 (DDS ≤ 3) | 536 | 1,189 | 1 | 1 | 1 |
Q2 (DDS = 4) | 454 | 1,355 | 0.743 (0.620–0.891) | 0.895 (0.734–1.091) | 1.063 (0.813–1.390) |
Q3 (DDS = 5) | 123 | 504 | 0.642 (0.490–0.842) | 0.785 (0.586–1.052) | 1.123 (0.736–1.713) |
p for trend | 0.0004 | 0.2377 | 0.8318 | ||
DVS2) | |||||
Male | |||||
Q1 (DVS < 25.5) | 183 | 466 | 1 | 1 | 1 |
Q2 (25.5 ≥ and < 33 | 3.5) 198 | 494 | 1.144 (0.839–1.559) | 1.115 (0.808–1.539) | 1.107 (0.646–1.603) |
Q3 (33.5 ≥ and < 40 | 0.0) 157 | 478 | 0.814 (0.607–1.090) | 0.749 (0.547–1.026) | 0.656 (0.421–1.022) |
Q4 (DVS ≥ 40.0) | 237 | 600 | 1.093 (0.837–1.428) | 0.957 (0.708–1.294) | 0.827 (0.518–1.318) |
p for trend | 0.1215 | 0.0866 | 0.1250 | ||
Female | |||||
Q1 (DVS < 25.2) | 372 | 725 | 1 | 1 | 1 |
Q2 (25.2 ≥ and < 32 | 2.3) 295 | 733 | 0.793 (0.643–0.978) | 0.909 (0.728–1.136) | 0.810 (0.584–1.128) |
Q3 (32.3 ≥ and < 39 | 9.9) 217 | 737 | 0.632 (0.499–0.802) | 0.789 (0.610–1.021) | 0.768 (0.524–1.025) |
Q4 (DVS ≥ 39.9) | 229 | 858 | 0.541 (0.421–0.694) | 0.695 (0.534–0.906) | 0.616 (0.420–0.903) |
p for trend | <.0001 | 0.0340 | 0.0414 |