Journal List > J Nutr Health > v.47(6) > 1081360

Kim, Kweon, and Bae: Evaluation of nutrient and food intake status, and dietary quality according to abdominal obesity based on waist circumference in Korean adults: Based on 2010–2012 Korean National Health and Nutrition Examination Survey

Abstract

ABSTRACT Purpose: This study was conducted in order to investigate the nutrient and food intake status, and dietary quality in Korean adults according to abdominal obesity based on waist circumference. Methods: We analyzed data from the combined 2010∼2012 KNHANES (Korean National Health and Nutrition Examination Survey). The analysis included 6,974 adults aged 40 to 64 years. In this study, according to abdominal obesity based on waist circumference (male ≥ 90 cm, female ≥ 85 cm), we classified the subjects into the obesity group (male, n = 775, female, n = 1,113) and control group (male, n = 2,038, female, n = 3,048). The nutrient and food group intake, ND (nutrient density), NAR (nutrient adequacy ratio), MAR (mean adequacy ratio), INQ (index of nutritional quality), DDS (dietary diversity score), and DVS (dietary variety score) were analyzed using data from the 24-recall method. Results: For male, no significant difference in quality index of the diet was observed between the obesity group and the normal group. In female, in diet quality (ND, NAR, and INQ), vitamin B2 (ND, NAR, and INQ) calcium (NAR), phosphorous (ND, INQ) and potassium (ND) of the obesity group was significantly lower than those of the control group. DDS and DVS in the obesity group (3.57, 30.95) were significantly lower than those of the control group (3.68, 32.84) (p = 0.0043, 0.0002). DVS (DVS ≥ 39.9) showed association with lower risk of waist obesity in a logistic regression model after adjustments for multiple confounding factors including age, education, income, alcohol intake frequency, smoking, physical activity, energy intake, and body mass index (OR: 0.616, 95% CI: 0.420–0.903). Conclusion: In conclusion, females with abdominal obesity had lower micronutrient intake quality, DVS than those of the control group. In Korean females, food intake variety can adversely affect waist circumference.

References

1. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3). Cheongwon: Korea Centers for Disease Control and Prevention;2013.
2. Kang JH, Jeong BG, Cho YG, Song HR, Kim KA. Medical expenditure attributable to overweight and obesity in adults with hypertension, diabetes and dyslipidemia: evidence from Korea National Health and Nutrition Examination Survey Data and Korea National Health Corporation Data. J Agric Med Community Health. 2010; 35(1):77–88.
3. Kuk JL, Lee S, Heymsfield SB, Ross R. Waist circumference and abdominal adipose tissue distribution: influence of age and sex. Am J Clin Nutr. 2005; 81(6):1330–1334.
crossref
4. Lim U, Ernst T, Buchthal SD, Latch M, Albright CL, Wilkens LR, Kolonel LN, Murphy SP, Chang L, Novotny R, Le Marchand L. Asian women have greater abdominal and visceral adiposity than Caucasian women with similar body mass index. Nutr Diabetes. 2011; 1:e6.
crossref
5. Luo W, Guo Z, Hu X, Zhou Z, Wu M, Zhang L, Liu J. 2 years change of waist circumference and body mass index and associations with type 2 diabetes mellitus in cohort populations. Obes Res Clin Pract. 2013; 7(4):e290–e296.
crossref
6. Mohammadifard N, Nazem M, Sarrafzadegan N, Nouri F, Sajjadi F, Maghroun M, Alikhasi H. Body mass index, waist-circumference and cardiovascular disease risk factors in Iranian adults: Isfahan healthy heart program. J Health Popul Nutr. 2013; 31(3):388–397.
crossref
7. Aleixandre A, Miguel M. Dietary fiber in the prevention and treatment of metabolic syndrome: a review. Crit Rev Food Sci Nutr. 2008; 48(10):905–912.
crossref
8. Houston DK, Nicklas BJ, Zizza CA. Weighty concerns: the growing prevalence of obesity among older adults. J Am Diet Assoc. 2009; 109(11):1886–1895.
crossref
9. Astrup A, Kristensen M, Gregersen NT, Belza A, Lorenzen JK, Due A, Larsen TM. Can bioactive foods affect obesity? Ann N Y Acad Sci. 2010; 1190:25–41.
crossref
10. Martínez-Augustin O, Aguilera CM, Gil-Campos M, Sánchez de Medina F, Gil A. Bioactive anti-obesity food components. Int J Vitam Nutr Res. 2012; 82(3):148–156.
crossref
11. Drewnowski A, Henderson SA, Shore AB, Fischler C, Preziosi P, Hercberg S. Diet quality and dietary diversity in France: implications for the French paradox. J Am Diet Assoc. 1996; 96(7):663–669.
12. Pate RR, Taverno Ross SE, Liese AD, Dowda M. Associations among physical activity, diet quality, and weight status in U.S. adults. Med Sci Sports Exerc. Forthcoming 2014. adults. Med Sci Sports Exerc. Forthcoming. 2014.
13. Lassale C, Galan P, Julia C, Fezeu L, Hercberg S, Kesse-Guyot E. Association between adherence to nutritional guidelines, the metabolic syndrome and adiposity markers in a French adult general population. PLoS One. 2013; 8(10):): e76349.
crossref
14. Jennings A, Welch A, van Sluijs EM, Griffin SJ, Cassidy A. Diet quality is independently associated with weight status in children aged 9–10 years. J Nutr. 2011; 141(3):453–459.
crossref
15. Bae YJ. Evaluation of nutrient and food intake status, and dietary quality in Korean female adults according to obesity: based on 2007–2009 Korean National Health and Nutrition Examination Survey. Korean J Nutr. 2012; 45(2):140–149.
16. Walls HL, Magliano DJ, McNeil JJ, Stevenson C, Ademi Z, Shaw J, Peeters A. Predictors of increasing waist circumference in an Australian population. Public Health Nutr. 2011; 14(5):870–881.
crossref
17. Arabshahi S, van der Pols JC, Williams GM, Marks GC, Lahmann PH. Diet quality and change in anthropometric measures: 15-year longitudinal study in Australian adults. Br J Nutr. 2012; 107(9):1376–1385.
crossref
18. Azadbakht L, Akbari F, Esmaillzadeh A. Diet quality among Iranian adolescents needs improvement. Public Health Nutr. 2006. 1–7.
crossref
19. Jayawardena R, Byrne NM, Soares MJ, Katulanda P, Yadav B, Hills AP. High dietary diversity is associated with obesity in Sri Lankan adults: an evaluation of three dietary scores. BMC Public Health. 2013; 13:314.
crossref
20. Lee S, Park HS, Kim SM, Kwon HS, Kim DY, Kim DJ, Cho GJ, Han JH, Kim SR, Park CY, Oh SJ, Lee CB, Kim KS, Oh SW, Kim YS, Choi WH, Yoo HJ. Cut-off points of waist circumference for defining abdominal obesity in the Korean population. Korean J Obes. 2006; 15(1):1–9.
21. Hansen RG. An index of food quality. Nutr Rev. 1973; 31(1):1–7.
crossref
22. Kant AK. Indexes of overall diet quality: a review. J Am Diet Assoc. 1996; 96(8):785–791.
23. Krebs-Smith SM, Smiciklas-Wright H, Guthrie HA, Krebs-Smith J. The effects of variety in food choices on dietary quality. J Am Diet Assoc. 1987; 87(7):897–903.
crossref
24. Sim KW, Lee SH, Lee HS. The relationship between body mass index and morbidity in Korea. J Korean Soc Study Obes. 2001; 10(2):147–155.
25. Lee RD, Nieman DC. Nutritional assessment. 5th edition.Dubuque (IA): McGraw-Hill;2010.
26. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr. 2004; 79(3):379–384.
crossref
27. Mamtani M, Kulkarni H, Dyer TD, Almasy L, Mahaney MC, Duggirala R, Comuzzie AG, Blangero J, Curran JE. Waist circumference independently associates with the risk of insulin resistance and type 2 diabetes in mexican american families. PLoS One. 2013; 8(3):): e59153.
crossref
28. Gröber-Grätz D, Widhalm K, de Zwaan M, Reinehr T, Blüher S, Schwab KO, Wiegand S, Holl RW. Body mass index or waist circumference: which is the better predictor for hypertension and dyslipidemia in overweight/obese children and adolescents? Association of cardiovascular risk related to body mass index or waist circumference. Horm Res Paediatr. 2013; 80(3):170–178.
crossref
29. Lee YE, Park JE, Hwang JY, Kim WY. Comparison of health risks according to the obesity types based upon BMI and waist circumference in Korean adults: the 1998–2005 Korean National Health and Nutrition Examination Surveys. Korean J Nutr. 2009; 42(7):631–638.
crossref
30. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002; 162(18):2074–2079.
31. Kim JH, Lee JE, Jung IK. Dietary pattern classifications and the association with general obesity and abdominal obesity in Korean women. J Acad Nutr Diet. 2012; 112(10):1550–1559.
crossref
32. Seo KH, Lee HJ, Lim BD, Choi YJ, Oh H, Yoon JS. Association of nutritional status with obesity by body mass index and waist circumference among hypertensive elderly patients. Korean J Community Nutr. 2009; 14(6):831–845.
33. Shin D, Joh HK, Kim KH, Park SM. Benefits of potassium intake on metabolic syndrome: The fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Atherosclerosis. 2013; 230(1):80–85.
crossref
34. World Health Organization (CH). Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. WHO technical report series 916. Geneva: World Health Organization;2003.
35. Azadbakht L, Mirmiran P, Azizi F. Dietary diversity score is favorably associated with the metabolic syndrome in Tehranian adults. Int J Obes (Lond). 2005; 29(11):1361–1367.
crossref
36. Kim SH, Kim JY, Ryu KA, Sohn CM. Evaluation of the dietary diversity and nutrient intakes in obese adults. Korean J Community Nutr. 2007; 12(5):583–591.
37. Lee JE, Ahn Y, Kimm K, Park C. Study on the associations of dietary variety and nutrition intake level by the number of survey days. Korean J Nutr. 2004; 37(10):908–916.
38. Gao SK, Beresford SA, Frank LL, Schreiner PJ, Burke GL, Fitzpatrick AL. Modifications to the Healthy Eating Index and its ability to predict obesity: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr. 2008; 88(1):64–69.
crossref
39. Tardivo AP, Nahas-Neto J, Nahas EA, Maesta N, Rodrigues MA, Orsatti FL. Associations between healthy eating patterns and indicators of metabolic risk in postmenopausal women. Nutr J. 2010; 9:64.
crossref
40. Assmann KE, Lassale C, Galan P, Hercberg S, Kesse-Guyot E. Dietary quality and 6-year anthropometric changes in a sample of French middle-aged overweight and obese adults. PLoS One. 2014; 9(2):): e87083.
crossref
41. Kim S, Haines PS, Siega-Riz AM, Popkin BM. The Diet Quality Index-International (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J Nutr. 2003; 133(11):3476–3484.
crossref

Table 1.
General characteristics, metabolic parameters, dietary habits and lifestyles of the subjects
Variable Male p value Female p value
Control (n = 2,038) Obesity (n = 775) Control (n = 3,048) Obesity (n = 1,113)
Age (yrs) 50.46 ± 0.181) 50.82 ± 0.29 0.2782 49.83 ± 0.16 52.98 ± 0.26 <.0001
BMI (kg/m2) 23.09 ± 0.06 27.05 ± 0.10 <.0001 22.60 ± 0.05 27.68 ± 0.14 <.0001
<18.5 59 (2.61)2) 2 (0.27) <.0001 97 (3.11) 1 (0.12) <.0001
≥ 18.5 and <23 859 (41.92) 15 (1.80)   1,644 (54.30) 25 (2.10)  
≥ 23 and <25 692 (33.03) 118 (14.99)   861 (27.83) 164 (13.88)  
≥ 25 428 (22.45) 640 (82.94)   446 (14.76) 923 (83.89)  
Waist circumference (cm) 81.47 ± 0.15 95.05 ± 0.22 <.0001 75.67 ± 0.14 91.37 ± 0.28 <.0001
Metabolic parameters
Total cholesterol (mg/dl) 190.20 ± 1.00 195.94 ± 1.58 0.0426 196.92 ± 0.81 201.85 ± 1.26 0.0008
Triglyceride (mg/dl) 159.04 ± 3.49 199.19 ± 5.67 <.0001 113.76 ± 2.18 149.59 ± 3.81 <.0001
HDL-cholesterol (mg/dl) 46.96 ± 0.31 43.23 ± 0.36 <.0001 52.18 ± 0.25 47.80 ± 0.41 <.0001
Glucose (mg/dl) 102.50 ± 0.67 108.64 ± 0.99 <.0001 94.74 ± 0.44 105.64 ± 1.14 <.0001
SBP (mmHg) 121.33 ± 0.45 125.39 ± 0.62 <.0001 117.14 ± 0.37 123.14 ± 0.68 <.0001
DBP (mmHg) 79.70 ± 0.31 83.00 ± 0.47 <.0001 75.20 ± 0.24 78.21 ± 0.39 <.0001
Breakfast skipper (%) 156 (8.94) 67 (10.18) 0.4259 272 (10.86) 89 (9.54) 0.3401
Frequency of alcohol
None 301 (15.15) 120 (13.78) 0.0722 1,064 (32.41) 455 (37.77) 0.0733
<1 time/month 383 (18.13) 109 (14.04)   1,251 (41.70) 403 (38.12)  
2∼4 times/month 522 (24.32) 193 (24.98)   507 (17.48) 175 (16.01)  
≥ 2 times/week 832 (42.38) 353 (47.21)   226 (8.41) 80 (8.10)  
Smoking
Non-smoker 327 (15.74) 107 (11.38) 0.0328 2,839 (91.95) 1,037 (91.84) 0.9896
Past smoker 895 (40.81) 364 (43.51)   91 (3.58) 37 (3.70)  
Current smoker 816 (43.45) 304 (45.10)   118 (4.47) 39 (4.45)  
Physical activity
Low 1,124 (54.67) 457 (58.09) 0.3851 1,849 (61.50) 684 (62.54) 0.3220
Moderate 809 (39.89) 288 (37.26)   1,114 (35.68) 409 (35.61)  
Vigorous 105 (5.45) 30 (4.65)   85 (2.82) 20 (1.85)  
Education
Elementary school 294 (13.78) 110 (11.75) 0.5570 645 (19.58) 453 (37.05) <.0001
Middle school 309 (15.10) 129 (15.36)   474 (15.53) 228 (22.09)  
High school 755 (39.38) 264 (38.49)   1,177 (41.37) 319 (31.54)  
≥ College 669 (31.74) 269 (34.40)   728 (25.52) 106 (9.32)  
Household income
Low 202 (10.75) 61 (7.40) 0.0962 325 (11.16) 214 (16.44) <.0001
Moderate low 474 (25.40) 193 (26.52)   758 (29.95) 318 (31.32)  
Moderate 627 (31.36) 224 (30.00)   830 (28.14) 314 (28.67)  
Upper 716 (32.49) 283 (35.98)   1,101 (33.75) 262 (23.57)  

1) Mean ± SD

2) N (%) All variables have been age-adjusted except age.

Table 2.
Energy and nutrient intakes per 1,000 kcal of the subjects
Variable Male p value Female p value
Control (n = 2,038) Obesity (n = 775) Control (n = 3,048) Obesity (n = 1,113)
Energy (kcal) 2,373.00 ± 22.841) 2,444.65 ± 35.39 0.0950 1,728.89 ± 15.02 1,719.05 ± 24.90 0.7214
  (/1,000 kcal)     (/1,000 kcal)    
Protein (g) 35.77 ± 0.26 35.63 ± 0.42 0.7848 35.81 ± 0.25 35.10 ± 0.40 0.1475
Fat (g) 18.22 ± 0.22 18.47 ± 0.35 0.5341 18.25 ± 0.21 17.25 ± 0.33 0.0113
Carbohydrate (g) 159.61 ± 0.96 158.87 ± 1.42 0.6426 175.40 ± 0.66 177.45 ± 1.14 0.1167
Fiber (g) 3.78 ± 0.06 4.10 ± 0.11 0.0083 4.69 ± 0.08 4.54 ± 0.13 0.2797
Vitamin A (ugRE) 419.80 ± 13.41 406.12 ± 17.93 0.5505 539.62 ± 38.40 485.73 ± 18.34 0.1801
Vitamin B1 (mg) 0.65 ± 0.01 0.67 ± 0.01 0.0772 0.68 ± 0.01 0.68 ± 0.01 0.7074
Vitamin B2 (mg) 0.59 ± 0.01 0.60 ± 0.01 0.6743 0.66 ± 0.01 0.63 ± 0.01 0.0185
Niacin (mg) 8.60 ± 0.07 8.71 ± 0.11 0.3840 8.75 ± 0.07 8.52 ± 0.10 0.0865
Vitamin C (mg) 53.41 ± 1.05 52.52 ± 1.48 0.6185 69.94 ± 1.97 64.62 ± 1.85 0.0515
Calcium (mg) 255.47 ± 3.29 254.57 ± 6.03 0.8968 296.56 ± 4.56 284.06 ± 6.83 0.1472
Phosphorous (mg) 599.24 ± 3.64 593.00 ± 5.79 0.3630 632.74 ± 3.52 615.16 ± 5.96 0.0135
Sodium (mg) 2,585.00 ± 31.90 2,621.01 ± 57.52 0.5948 2,519.29 ± 31.92 2,572.74 ± 48.70 0.3554
Potassium (mg) 1,529.11 ± 13.37 1,551.09 ± 21.98 0.3906 1,781.72 ± 22.70 1,696.20 ± 23.13 0.0097
Iron (mg) 8.11 ± 0.25 7.76 ± 0.21 0.3115 8.80 ± 0.15 8.54 ± 0.22 0.3360
Energy distribution
% Carbohydrate 63.84 ± 0.39 63.55 ± 0.57 0.6426 70.16 ± 0.26 70.98 ± 0.45 0.1167
% Protein 14.31 ± 0.10 14.25 ± 0.17 0.7848 14.32 ± 0.98 14.04 ± 0.16 0.1475
% Fat 16.40 ± 0.20 16.62 ± 0.32 0.5341 16.42 ± 0.19 15.93 ± 0.29 0.0113

1) Mean ± SD All variables have been age-adjusted.

Table 3.
Nutrient adequacy ratio (NAR) and mean adequacy ratio (MAR) of the subjects
Variable Male p value Female p value
Control (n = 2,038) Obesity (n = 775) Control (n = 3,048) Obesity (n = 1,113)
NAR
Protein 0.96 ± 0.001) 0.96 ± 0.00 0.8415 0.93 ± 0.00 0.92 ± 0.01 0.1930
Vitamin A 0.79 ± 0.01 0.79 ± 0.01 0.7230 0.78 ± 0.01 0.76 ± 0.01 0.0610
Vitamin B1 0.90 ± 0.00 0.92 ± 0.01 0.0590 0.84 ± 0.00 0.83 ± 0.01 0.6339
Vitamin B2 0.79 ± 0.01 0.79 ± 0.01 0.5933 0.77 ± 0.01 0.75 ± 0.01 0.0331
Niacin 0.90 ± 0.00 0.91 ± 0.01 0.5178 0.85 ± 0.00 0.84 ± 0.01 0.3472
Vitamin C 0.80 ± 0.01 0.81 ± 0.01 0.5734 0.77 ± 0.01 0.74 ± 0.01 0.0690
Calcium 0.71 ± 0.01 0.72 ± 0.01 0.5786 0.65 ± 0.01 0.62 ± 0.01 0.0140
Phosphorous 0.99 ± 0.00 0.99 ± 0.00 0.6769 0.96 ± 0.00 0.96 ± 0.01 0.4323
Iron 0.96 ± 0.00 0.96 ± 0.00 0.6018 0.89 ± 0.00 0.88 ± 0.01 0.7561
MAR 0.87 ± 0.00 0.87 ± 0.01 0.4308 0.83 ± 0.00 0.81 ± 0.01 0.0586

1) Mean ± SD All variables have been age-adjusted.

Table 4.
Index of Nutritional Quality (INQ) of the subjects
Variable Male p value Female p value
Control (n = 2,038) Obesity (n = 775) Control (n = 3,048) Obesity (n = 1,113)
Protein 1.57 ± 0.011) 1.56 ± 0.02 0.7787 1.46 ± 0.01 1.44 ± 0.02 0.2006
Vitamin A 1.33 ± 0.04 1.28 ± 0.06 0.5415 1.60 ± 0.11 1.44 ± 0.05 0.1758
Vitamin B1 1.23 ± 0.01 1.27 ± 0.02 0.0760 1.14 ± 0.01 1.13 ± 0.01 0.7788
Vitamin B2 0.90 ± 0.01 0.91 ± 0.02 0.6913 1.01 ± 0.01 0.97 ± 0.01 0.0240
Niacin 1.22 ± 0.01 1.24 ± 0.02 0.3437 1.15 ± 0.01 1.12 ± 0.01 0.1217
Vitamin C 1.21 ± 0.02 1.19 ± 0.03 0.6056 1.29 ± 0.04 1.19 ± 0.03 0.0609
Calcium 0.81 ± 0.01 0.81 ± 0.02 0.8867 0.80 ± 0.01 0.77 ± 0.02 0.1876
Phosphorous 1.94 ± 0.01 1.92 ± 0.02 0.3803 1.66 ± 0.01 1.62 ± 0.02 0.0208
Iron 1.97 ± 0.06 1.89 ± 0.05 0.3091 1.68 ± 0.03 1.62 ± 0.04 0.1729

1) Mean ± SD All variables have been age-adjusted.

Table 5.
Food intakes from each food group of the subjects
Variable Male p value Female p value
Control (n = 2,038) Obesity (n = 775) Control (n = 3,048) Obesity (n = 3,048)
  (g/day)   (g/day)  
Total food 1,745.43 ± 23.501) 1,827.25 ± 38.90 0.0846 1,366.31 ± 19.09 1,283.01 ± 23.89 0.0029
Cereals 347.99 ± 3.92 358.18 ± 7.01 0.1912 276.80 ± 3.22 290.23 ± 5.23 0.0272
Potato and starches 37.91 ± 2.87 37.52 ± 3.59 0.9312 43.76 ± 2.47 38.05 ± 3.71 0.2108
Sugars and sweetners 11.48 ± 0.65 12.14 ± 0.78 0.5217 7.52 ± 0.33 7.65 ± 0.48 0.8282
Pulses 49.97 ± 2.34 44.61 ± 3.95 0.2363 35.90 ± 1.51 35.59 ± 3.01 0.9277
Nuts and seeds 5.53 ± 1.02 12.97 ± 7.44 0.3675 5.97 ± 0.42 5.25 ± 0.72 0.3782
Vegetables 406.26 ± 6.64 433.95 ± 11.17 0.0347 324.46 ± 6.60 314.87 ± 7.67 0.3662
Fungi and mushrooms 4.71 ± 0.41 5.13 ± 0.76 0.6401 5.17 ± 0.38 3.84 ± 0.52 0.0447
Fruits 186.66 ± 9.21 194.57 ± 13.49 0.6348 260.02 ± 11.95 219.29 ± 10.70 0.0020
Meats 108.39 ± 4.42 109.95 ± 6.52 0.8499 65.02 ± 2.34 64.06 ± 3.66 0.8281
Eggs 23.54 ± 1.19 23.54 ± 1.73 0.9995 18.73 ± 0.73 17.34 ± 1.21 0.3051
Fish and shellfishes 78.51 ± 3.15 85.73 ± 5.22 0.2400 49.26 ± 1.72 43.02 ± 2.20 0.0318
Seaweeds 5.55 ± 0.43 6.04 ± 0.77 0.5559 5.71 ± 0.42 4.95 ± 0.46 0.2172
Milks 64.95 ± 3.58 58.76 ± 5.68 0.3649 85.43 ± 3.37 67.95 ± 4.93 0.0019
Oils and fat 9.04 ± 0.27 10.33 ± 0.44 0.0149 6.38 ± 0.20 6.65 ± 0.38 0.5481
Beverages 360.35 ± 16.10 388.17 ± 25.61 0.3858 143.46 ± 7.46 131.88 ± 12.38 0.4397
Seasoning 44.28 ± 1.09 45.53 ± 1.76 0.5524 31.76 ± 0.78 32.16 ± 1.47 0.8115
Other 0.30 ± 0.12 0.14 ± 0.09 0.2693 0.97 ± 0.75 0.23 ± 0.15 0.3441

1) Mean ± SD All variables have been age-adjusted.

Table 6.
Dietary diversity score (DDS) and dietary variety score (DVS) of the subjects
Variable Male p value Female p value
Control (n = 2,038) Obesity (n = 775) Control (n = 3,048 Obesity (n = 1,113)
DDS
Grains 0.998 ± 0.0011) 0.999 ± 0.001 0.7208 0.999 ± 0.001 0.999 ± 0.001 0.9829
Meats 0.945 ± 0.006 0.930 ± 0.010 0.1818 0.902 ± 0.007 0.876 ± 0.011 0.0528
Vegetables 0.997 ± 0.001 0.994 ± 0.003 0.3483 0.986 ± 0.003 0.989 ± 0.004 0.5467
Fruits 0.542 ± 0.013 0.604 ± 0.020 0.0116 0.426 ± 0.012 0.403 ± 0.019 0.3127
Dairy 0.277 ± 0.245 0.012 ± 0.019 0.1568 0.367 ± 0.012 0.307 ± 0.017 0.0033
Distribution
0 1 (0.04)2) <.0001
1 3 (0.11) 2 (0.09)   8 (0.37) 3 (0.11)  
2 62 (2.89) 32 (4.27)   159 (4.74) 95 (9.01)  
3 622 (30.97) 210 (26.51)   1,022 (34.48) 438 (38.68)  
4 1,018 (49.47) 416 (53.78)   1,355 (43.95) 454 (39.44)  
5 332 (16.52) 115 (15.35)   504 (16.46) 123 (12.76)  
Mean ± SD 3.76 ± 0.02 3.77 ± 0.03 0.7136 3.68 ± 0.02 3.57 ± 0.03 0.0043
DVS
Mean ± SD 33.23 ± 0.31 33.43 ± 0.50 0.7241 32.84 ± 0.28 30.95 ± 0.42 0.0002

1) Mean ±SD

2) N (%)

All variables have been age-adjusted.

Table 7.
Adjusted odd radios (ORs) and 95% confidence intervals (CIs) of waist obesity by dietary diversity
  Case Control Model 1 Model 2 Model 3
DDS1)
Male
Q1 (DDS ≤ 3) 244 688 1 1 1
Q2 (DDS = 4) 416 1,018 1.198 (0.956–1.501) 1.136 (0.890–1.450) 0.967 (0.677–1.381)
Q3 (DDS = 5) 115 332 1.024 (0.753–1.393) 0.968 (0.694–1.350) 0.843 (0.515–1.379)
p for trend     0.2433 0.4286 0.7783
Female
Q1 (DDS ≤ 3) 536 1,189 1 1 1
Q2 (DDS = 4) 454 1,355 0.743 (0.620–0.891) 0.895 (0.734–1.091) 1.063 (0.813–1.390)
Q3 (DDS = 5) 123 504 0.642 (0.490–0.842) 0.785 (0.586–1.052) 1.123 (0.736–1.713)
p for trend     0.0004 0.2377 0.8318
DVS2)
Male
Q1 (DVS < 25.5) 183 466 1 1 1
Q2 (25.5 ≥ and < 33 3.5) 198 494 1.144 (0.839–1.559) 1.115 (0.808–1.539) 1.107 (0.646–1.603)
Q3 (33.5 ≥ and < 40 0.0) 157 478 0.814 (0.607–1.090) 0.749 (0.547–1.026) 0.656 (0.421–1.022)
Q4 (DVS ≥ 40.0) 237 600 1.093 (0.837–1.428) 0.957 (0.708–1.294) 0.827 (0.518–1.318)
p for trend     0.1215 0.0866 0.1250
Female
Q1 (DVS < 25.2) 372 725 1 1 1
Q2 (25.2 ≥ and < 32 2.3) 295 733 0.793 (0.643–0.978) 0.909 (0.728–1.136) 0.810 (0.584–1.128)
Q3 (32.3 ≥ and < 39 9.9) 217 737 0.632 (0.499–0.802) 0.789 (0.610–1.021) 0.768 (0.524–1.025)
Q4 (DVS ≥ 39.9) 229 858 0.541 (0.421–0.694) 0.695 (0.534–0.906) 0.616 (0.420–0.903)
p for trend     <.0001 0.0340 0.0414

1) Dietary diversity score, DDS

2) Dietary variety score, DVS

Model 1: Unadjusted model; Model 2: Adjustment for age, education, income, alcohol intake frequency, smoking, physical activity (MET) and energy intake; Model 3: Model 2+body mass index

TOOLS
Similar articles