Journal List > J Nutr Health > v.47(3) > 1081335

Oh, Ahn, Jung, Hyesook, Kwon, Chung, and Chang: Relationship between flavonoids intake and metabolic syndrome in Korean women with polycystic ovary syndrome∗

Abstract

Purpose

The purpose of this study was to investigate the relationship between dietary flavonoids intake and metabolic syndrome (MetS) in Korean women with polycystic ovary syndrome (PCOS). Methods: A total of 223 subjects (mean age; 27.3 ± 4.2 yrs, range; 17–38 yrs) were divided into the MetS group (n = 27) and non-MetS group (n = 196). Dietary intake data were assessed by 24-hour recall method for two non-consecutive days and the average of the two days was used to estimate the usual dietary intake. Dietary habits were assessed using the Mini Dietary Assessment (MDA) score. We analyzed the intakes of six flavonoid classes (anthocyanidins, flavan-3-ols, flavanones, flavones, flavonols, and isoflavones) using a flavonoids database. Results: After adjustment for age, total energy intake, alcohol consumption, smoking, regular exercise, and oral contraceptive use, dietary flavonols intake was significantly lower in the MetS group (5.1 ± 2.4 mg/d) than in the non-MetS group (8.9 ± 2.8 mg/d) (p = 0.0472). Intakes of other flavonoids except for flavonols did not differ between the two groups. In MDA scores, significant differences were observed only for that related to daily consumption of fruit or fruit juice (p = 0.0180). A significant inverse relationship was observed between flavonols intake and the risk of MetS (4th vs. 1st quartile, OR = 0.11, 95% CI = 0.02–0.62, p for trend = 0.0131). Conclusion: These results suggest that higher intake of flavonols may be beneficial for MetS in PCOS women.

References

1. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004; 89(6):2745–2749.
crossref
2. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011; 7(4):219–231.
crossref
3. Boudreaux MY, Talbott EO, Kip KE, Brooks MM, Witchel SF. Risk of T2DM and impaired fasting glucose among PCOS subjects: results of an 8-year follow-up. Curr Diab Rep. 2006; 6(1):77–83.
crossref
4. Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, Lobo R, Norman RJ, Talbott E, Dumesic DA. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab. 2010; 95(5):2038–2049.
crossref
5. Hahn S, Tan S, Sack S, Kimmig R, Quadbeck B, Mann K, Janssen OE. Prevalence of the metabolic syndrome in German women with polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. 2007; 115(2):130–135.
crossref
6. Cussons AJ, Watts GF, Burke V, Shaw JE, Zimmet PZ, Stuckey BG. Cardiometabolic risk in polycystic ovary syndrome: a comparison of different approaches to defining the metabolic syndrome. Hum Reprod. 2008; 23(10):2352–2358.
crossref
7. Gambineri A, Repaci A, Patton L, Grassi I, Pocognoli P, Cognig-ni GE, Pasqui F, Pagotto U, Pasquali R. Prominent role of low HDL-cholesterol in explaining the high prevalence of the metabolic syndrome in polycystic ovary syndrome. Nutr Metab Cardiovasc Dis. 2009; 19(11):797–804.
crossref
8. Lee H, Oh JY, Hong Y, Sung YA, Chung H. Prevalence of metabolic syndrome in young Korean women with polycystic ovary syndrome. J Korean Diabetes Assoc. 2006; 30(4):285–291.
crossref
9. Kouki R, Schwab U, Hassinen M, Komulainen P, Heikkilä H, Lakka TA, Rauramaa R. Food consumption, nutrient intake and the risk of having metabolic syndrome: the DR's EXTRA Study. Eur J Clin Nutr. 2011; 65(3):368–377.
crossref
10. Martínez-González MÁ. Martín-Calvo N. The major European dietary patterns and metabolic syndrome. Rev Endocr Metab Disord. 2013; 14(3):265–271.
crossref
11. Almoosawi S, Tsang C, Ostertag LM, Fyfe L, Al-Dujaili EA. Differential effect of polyphenol-rich dark chocolate on biomarkers of glucose metabolism and cardiovascular risk factors in healthy, overweight and obese subjects: a randomized clinical trial. Food Funct. 2012; 3(10):1035–1043.
crossref
12. Barona J, Aristizabal JC, Blesso CN, Volek JS, Fernandez ML. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J Nutr. 2012; 142(9):1626–1632.
crossref
13. Sohrab G, Hosseinpour-Niazi S, Hejazi J, Yuzbashian E, Mirmiran P, Azizi F. Dietary polyphenols and metabolic syndrome among Iranian adults. Int J Food Sci Nutr. 2013; 64(6):661–667.
crossref
14. Steffen Y, Gruber C, Schewe T, Sies H. Mono-O-methylated fla-vanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys. 2008; 469(2):209–219.
crossref
15. Xiao ZP, Peng ZY, Peng MJ, Yan WB, Ouyang YZ, Zhu HL. Flavonoids health benefits and their molecular mechanism. Mini Rev Med Chem. 2011; 11(2):169–177.
crossref
16. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, Carmina E, Chang J, Yildiz BO, Laven JS, Boivin J, Petraglia F, Wijeyeratne CN, Norman RJ, Dunaif A, Franks S, Wild RA, Dumesic D, Barnhart K. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/AS-RM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012; 97(1):28–38.e25.
crossref
17. Korean Diabetes Association. Treatment guideline for diabetes. the. 4th edition.Seoul: Korean Diabetes Association;2011.
18. The Korean Nutrition Society. Nutritional assessment program ‘CAN-Pro 4.0' [CD-ROM]. Seoul: The Korean Nutrition Society;2011.
19. Yang YK, Kim JY, Kwon O. Development of flavonoid database for commonly consumed foods by Koreans. Korean J Nutr. 2012; 45(3):283–292.
crossref
20. Kim WY, Cho MS, Lee HS. Development and validation of mini dietary assessment index for Koreans. Korean J Nutr. 2003; 36(1):83–92.
21. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr. 2007; 137(11):2405–2411.
crossref
22. Jacques PF, Cassidy A, Rogers G, Peterson JJ, Meigs JB, Dwyer JT. Higher dietary flavonol intake is associated with lower incidence of type 2 diabetes. J Nutr. 2013; 143(9):1474–1480.
crossref
23. Holden JM, Bhagwat SA, Haytowitz DB, Gebhardt SE, Dwyer JT, Peterson J, Beecher GR, Eldridge AL, Balentine D. Development of a database of critically evaluated flavonoids data: application of USDA's data quality evaluation system. J Food Compost Anal. 2005; 18(8):829–844.
crossref
24. Erdman JW Jr, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, Scalbert A, Vita J, Williamson G, Burrowes J. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr. 2007; 137(3 Suppl 1):718S–737S.
crossref
25. Kim JY, Kwon O. Culinary plants and their potential impact on metabolic overload. Ann N Y Acad Sci. 2011; 1229:133–139.
crossref
26. Galleano M, Calabro V, Prince PD, Litterio MC, Piotrkowski B, Vazquez-Prieto MA, Miatello RM, Oteiza PI, Fraga CG. Flavonoids and metabolic syndrome. Ann N Y Acad Sci. 2012; 1259:87–94.
crossref
27. van Dam RM, Naidoo N, Landberg R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr Opin Lipidol. 2013; 24(1):25–33.
28. Siasos G, Tousoulis D, Tsigkou V, Kokkou E, Oikonomou E, Va-vuranakis M, Basdra EK, Papavassiliou AG, Stefanadis C. Flavonoids in atherosclerosis: an overview of their mechanisms of action. Curr Med Chem. 2013; 20(21):2641–2660.
crossref
29. Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS, Hu FB, van Dam RM. Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in U.S. women. J Nutr. 2011; 141(4):618–625.
crossref
30. Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005; 51(2):117–123.
31. Mahesh T, Menon VP. Quercetin allievates oxidative stress in streptozotocin-induced diabetic rats. Phytother Res. 2004; 18(2):123–127.
crossref
32. Kobori M, Masumoto S, Akimoto Y, Takahashi Y. Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res. 2009; 53(7):859–868.
crossref
33. Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003; 135C(3):357–364.
crossref
34. Yang YK. Construction of flavonoid database for the estimation of flavonoid intake in Korean [Dissertation]. Seoul: Ewha Womans University;2011.
35. Yoo S, Nicklas T, Baranowski T, Zakeri IF, Yang SJ, Srinivasan SR, Berenson GS. Comparison of dietary intakes associated with metabolic syndrome risk factors in young adults: the Bogalusa Heart Study. Am J Clin Nutr. 2004; 80(4):841–848.
crossref
36. Yang YJ, Kim YJ, Yang YK, Kim JY, Kwon O. Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults. Nutr Res Pract. 2012; 6(1):68–77.
crossref
37. U.S. Department of Health and Human Services; U.S. Department of Agriculture. Dietary guidelines for Americans 2005. 6th edition.Washington, D.C.: U.S. Government Printing Office;2005.
38. Estaquio C, Castetbon K, Kesse-Guyot E, Bertrais S, Deschamps V, Dauchet L, Péneau S, Galan P, Hercberg S. The French National Nutrition and Health Program score is associated with nutritional status and risk of major chronic diseases. J Nutr. 2008; 138(5):946–953.
crossref
39. World Cancer Research Fund; American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington D.C.: American Institute for Cancer Research;2007.
40. Lee HS, Cho YH, Park J, Shin HR, Sung MK. Dietary intake of phytonutrients in relation to fruit and vegetable consumption in Korea. J Acad Nutr Diet. 2013; 113(9):1194–1199.
crossref
41. The Korean Nutrition Society. Dietary reference intakes for Koreans, 1st revision. Seoul: The Korean Nutrition Society;2010.
42. Vural B, Caliskan E, Turkoz E, Kilic T, Demirci A. Evaluation of metabolic syndrome frequency and premature carotid atherosclerosis in young women with polycystic ovary syndrome. Hum Reprod. 2005; 20(9):2409–2413.
crossref
43. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Hor-vat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D'Agostino RB Sr, O'Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007; 116(1):39–48.
44. Ganie MA, Kalra S. Polycystic ovary syndrome – A metabolic malady, the mother of all lifestyle disorders in women – Can Indian health budget tackle it in future? Indian J Endocrinol Metab. 2011; 15(4):239–241.
crossref

Table 1.
General characteristics according to MetS in subjects 1)
  All (n = 223) Non-MetS2) (n = 196) MetS3) (n = 27) p value4)
Age (yr) 27.3 ± 4.20 27.0 ± 3.90 29.4 ± 5.50 < 0.0401
Height (cm) 161.5 ± 5.500 161.1 ± 5.300 164.4 ± 5.600 < 0.0034
Weight (kg) 59.0 ± 12.8 56.2 ± 10.0 79.4 ± 12.8 < 0.0001
BMI (kg/m 2) 22.5 ± 4.40 21.6 ± 3.50 29.3 ± 4.10 < 0.0001
Waist (cm) 76.5 ± 10.8 74.0 ± 8.40 94.7 ± 9.10 < 0.0001
Hip (cm) 91.4 ± 8.10 89.9 ± 6.90 102.5 ± 7.600 < 0.0001
Waist-to hip ratio (WHR) 0.83 ± 0.06 0.82 ± 0.06 0.92 ± 0.04 < 0.0001
Occupation       < 0.07715)
Students 58 (26.0) 54 (27.6) 4 (14.8)  
Employed 127 (57.0) 113 (57.6) 14 (51.9)  
Househwives 10 (04.5) 8 (04.1) 2 (07.4)  
Others 28 (12.5) 21 (10.7) 7 (25.9)  
Nutritional supplement use 40 (17.9) 37 (18.8) 3 (11.1) < 0.42845)
Oral contraceptive use 105 (47.1) 92 (46.9) 13 (48.2) < 0.7099
Smoking       < 0.00325)
Current smoker 26 (11.7) 17 (08.7) 9 (33.3)  
Ex smoker 11 (04.9) 9 (04.6) 2 (07.4)  
Non smoker 184 (82.5) 168 (85.7) 16 (59.3)  
Current alcohol drinking 157 (70.4) 139 (70.9) 18 (66.7) < 0.8969
Regular exercise 106 (47.5) 94 (48.0) 32 (44.4) < 0.8058

1) Values are mean ± SD or number (%).

2) Non-MetS: non metabolic syndrome group

3) MetS: metabolic syndrome group

4) From chi-square tests for categorical variables and Student's t-test for continuous variables

5) From Fisher's exact test

Table 2.
Blood profiles according to MetS in subjects 1)
  All (n = 223) N Non-MetS2) (n = 196) MetS3) (n = 27) p value5)
Unadjusted Adjusted6)
Systolic blood pressure (mmHg) 113.8 ± 15.64) 111.3 ± 14.2 131.5 ± 14.7 < 0.0001 < 0.0001
Diastolic blood pressure (mmHg) 068.5 ± 11.4 066.7 ± 10.3 081.4 ± 10.8 < 0.0001 < 0.0001
Total cholesterol (mg/dl) 178.8 ± 1.20 176.7 ± 1.20 194.9 ± 1.20 < 0.0053 < 0.0044
Triglyceride (mg/dl) 079.6 ± 1.6 71.6 ± 1.5 172.9 ± 1.40 < 0.0001 < 0.0001
HDL cholesterol (mg/dl) 057.4 ± 1.3 60.3 ± 1.2 40.0 ± 1.2 < 0.0001 < 0.0001
LDL cholesterol (mg/dl) 100.2 ± 1.30 97.1 ± 1.3 124.7 ± 1.30 < 0.0001 < 0.0001
Glucose0 (mg/dl)7) 087.6 ± 1.1 86.5 ± 1.1 96.1 ± 1.1 < 0.0001 < 0.0001
Glucose120 (mg/dl)8) 100.3 ± 1.20 97.3 ± 1.2 125.1 ± 1.20 < 0.0001 < 0.0001

1) Data are log-transformed before analysis except blood pressure data.

2) Non-MetS: non metabolic syndrome group

3) MetS: metabolic syndrome group

4) Values are GM ± GSD except for blood pressure (mean ± SD).

5) From Student's t-test

6) Adjusted for age, log-transformed total energy intake, current alcohol drinking, smoking, regular exercise, oral contraceptives us

7) Glucose0; blood glucose at fasting

8) Glucose120; blood glucose at 120 minute after a 75 g oral glucose tolerance test

Table 3.
Dietary plant foods, nutrients and flavonoids intakes according to MetS in subjects 1)
  All (n = 223) N Non-MetS2) (n = 196) MetS3) (n = 27) p value4)
Unadjusted adjusted6)
Plants foods (g/d) 742.1 ± 1.4 748.9 ± 1.5 694.4 ± 1.4 0.3152 0.3180
Cereals/potatoes products 228.2 ± 1.5 226.8 ± 1.5 238.2 ± 1.5 0.5584 0.0132
Sugars 6.9 ± 2.9 7.2 ± 2.8 9.8 ± 8.0 0.1255 0.2949
Beans/nuts 17.7 ± 5.7 19.2 ± 5.3 5.1 ± 3.5 0.0770 0.1538
Fruits/vegetables/mushrooms/seaweeds 251.8 ± 1.9 253.5 ± 1.9 240.0 ± 1.6 0.5748 0.8543
Oils 6.3 ± 2.3 6.3 ± 2.3 6.5 ± 1.8 0.7970 0.2018
Beverages 111.9 ± 4.6 108.3 ± 4.8 146.4 ± 3.0 0.4083 0.7534
Nutrients          
Energy (kcal/d) 1,414.4 ± 1.3 1,429.2 ± 1.3 1,311.5 ± 1.4 0.1369 0.2567
Carbohydrate (g/d) 202.3 ± 1.4 202.8 ± 1.4 199.0 ± 1.4 0.7609 0.0037
Protein (g/d) 52.9 ± 1.4 53.5 ± 1.4 48.5 ± 1.5 0.1551 0.3599
Fat (g) 41.3 ± 1.5 42.4 ± 1.5 34.0 ± 1.6 0.0073 0.0045
Cholesterol (mg/d) 216.3 ± 1.9 226.0 ± 1.8 157.5 ± 2.2 0.0323 0.0112
Fiber (g/d) 13.7 ± 1.5 13.8 ± 1.5 13.0 ± 1.5 0.4373 0.7123
Calcium (mg/d) 398.8 ± 1.6 403.8 ± 1.6 364.2 ± 1.5 0.2655 0.8027
Iron (mg/d) 9.9 ± 1.5 10.1 ± 1.5 8.9 ± 1.5 0.1332 0.4926
Zinc (mg/d) 7.3 ± 1.4 7.5 ± 1.4 6.5 ± 1.4 0.0438 0.1314
Flavonoids (mg/d)          
Anthocyanidins 5.6 ± 5.2 5.7 ± 5.6 4.7 ± 2.7 0.4772 0.9798
Flavan-3-ols 2.0 ± 24.35) 2.0 ± 23.2 1.7 ± 41.1 0.8435 0.5523
Flavanones 5.2 ± 12.75) 5.2 ± 12.8 5.1 ± 13.9 0.9893 0.7857
Flavones 0.3 ± 3.3 0.3 ± 3.2 0.3 ± 3.9 0.7950 0.8802
Flavonols 8.3 ± 2.7 8.9 ± 2.8 5.1 ± 2.4 0.0090 0.0472
Isoflavones 1.4 ± 21.65) 1.5 ± 21.4 1.1 ± 24.2 0.5937 0.9145
Total 39.8 ± 3.1 41.5 ± 2.8 29.2 ± 4.9 0.2676 0.1827

1) Data are log-transformed before analysis.

2) Non-MetS: non metabolic syndrome group

3) MetS: metabolic syndrome grou

4) From Student's t-test

5) Values are GM ± GSD.

6) Adjusted for age, log-transformed total energy intake, current alcohol drink ing, smoking, regular exercise, oral contraceptives use

Table 4.
Mini dietary assessment (MDA) scores1) of the subjects according to MetS in subjects 2)
Component of MDA All (n = 223) Non-MetS
(n = 196)3)
MetS4)
(n = 27)
p value5)
I drink 1 or more bottles of milk or its products (yogurt, yoplait, etc.) daily. Always 58 (26.01) 51 (26.02) 7 (25.93) 0.7411
Generally 71 (31.84) 64 (32.65) 7 (25.93)
Seldom 94 (42.15) 81 (41.33) 13 (48.15)
For each meal, I consume foods made up of a combination of meat, fish, eggs, beans, tobu, etc. Always 48 (21.52) 39 (19.90) 9 (33.33) 0.2537
Generally 97 (43.50) 88 (44.90) 9 (33.33)
Seldom 78 (34.98) 69 (35.20) 9 (33.33)
For each meal, I consume vegetables other than Kimchi. Always 57 (25.56) 51 (26.02) 6 (22.22) 0.2208
Generally 99 (44.39) 83 (42.35) 16 (59.26)
Seldom 67 (30.04) 62 (31.63) 5 (18.52)
I consume at least 1 fruit or fruit juice (1 glass) daily. Always 53 (23.77) 47 (23.98) 6 (22.22) 0.0180
Generally 81 (36.32) 77 (39.29) 4 (14.81)
Seldom 89 (39.91) 72 (36.73) 17 (62.96)
I consume fried or stir-fried foods at least 2 times per week. Always 31 (13.90) 26 (13.27) 9 (33.33) 0.4676
Generally 94 (42.15) 81 (41.33) 13 (48.15)
Seldom 98 (43.95) 89 (45.41) 5 (18.52)
I consume high fat content eats (bacon, ribs, eel, etc.) at least 2 times per week. Always 19 (08.52) 17 (08.67) 2 (07.41) 0.9144
Generally 67 (30.04) 58 (29.59) 9 (33.33)
Seldom 137 (61.43) 121 (61.73) 16 (59.26)
I tent to add extra salt or soy sauce while taking my meal. Always 9 (04.05) 8 (04.10) 1 (03.70) 0.5682
Generally 34 (15.32) 28 (14.36) 6 (22.22)
Seldom 179 (80.63) 159 (81.54) 20 (74.07)
I have three regular meals a day. Always 48 (21.52) 44 (22.45) 4 (14.81) 0.3579
Generally 66 (29.60) 55 (28.06) 11 (40.74)
Seldom 109 (48.88) 97 (22.45) 12 (44.44)
I consume ice cream, cake, biscuit varieties, carbonated beverages, etc. as snack at least 2 times per week. Always 23 (10.31) 17 (08.67) 6 (22.22) 0.0786
Generally 60 (26.91) 55 (28.06) 5 (18.52)
Seldom 140 (62.78) 124 (63.27) 16 (59.26)
I tend to consume a wide range of foods evenly (I have a balanced diet.). Always 67 (30.04) 60 (30.61) 7 (25.93) 0.8089
Generally 100 (44.84) 88 (44.90) 12 (44.44)
Seldom 56 (25.11) 48 (24.49) 8 (29.63)
Total score of MDA6)   32.7 ± 6.4 32.9 ± 6.4 31.6 ± 6.5 0.33437)

1) Minimum and maximum scores for each component are 1 and 5. The total score can be up to 50.

2) Values are number (%).

3) Non-MetS: non metabolic syndrome group

4) MetS: metabolic syndrome group

5) From chi-square tests

6) Values are mean ± SD.

7) From Student's t-test

Table 5.
Odds ratio (OR) and 95% confidence interval (CI) of MetS by quartiles of dietary flavonols intakes 1)
Quartiles
  Q1 (< 4.14 mg/d) Q2 (4.14–8.87 mg/d) Q3 (8.88–15.8 mg/d) Q4 (> 15.8 mg/d) p for trend
Unadjusted 1.00 (ref) 0.40 (0.14, 1.13) 0.41 (0.14, 1.16) 0.12 (0.03, 0.57) 0.0084
Adjusted 1.00 (ref) 0.41 (0.13, 1.36) 0.44 (0.14, 1.39) 0.11 (0.02, 0.62) 0.0131

1) Adjusted for age, log-transformed total energy intake, current alcohol drinking, smoking, regular exercise, oral contraceptives use

TOOLS
Similar articles