Journal List > J Nutr Health > v.46(6) > 1081320

Jung: Prevalence of vitamin D deficiency in Korea: Results from KNHANES 2010 to 2011

Abstract

Vitamin D deficiency (VDD) is becoming an epidemic and thereby a global health problem. Further, VDD adversely affects calcium metabolism and skeletal health, and is associated with increased risk of several diseases, e.g., autoimmune diseases, several types of cancers, type 2 diabetes mellitus, cardiovascular diseases, infectious diseases, asthma, psoriatic arthritis, and etc. To evaluate the prevalence of VDD in Korea, and then to evaluate the association of several factors with serum 25(OH)D level, the author analyzed the data of 14,456 individuals who were 10 years of age and over from the Fifth Korea National Health and Nutrition Examination Survey 1 & 2 (KNHANES V-1 & 2) conducted by the Korean Centers for Disease Control & Prevention. As a result, among Koreans (age ≧ 10years), 65.9% of males and 77.7% of females were below optimum blood serum 25(OH)D (20 ng/mL). VDD is more severe in female than in male at all age groups. In addition, the younger generations had less 25(OH)D level than older generations in Korea. The analysis by complex sample general linear model (CSGLM) suggested that blood 25(OH)D concentration was related with gender (p < .001), residence (p = .030), occupation (p < .001), anemia (p < .001) and physical activity (p < .001). In conclusion, VDD is pandemic and it is more severe in younger generations in Korea. Further, from the results by CSGLM, serum 25(OH)D status is closely related with the life style of Koreans. (J Nutr Health 2013; 46(6): 540 – 551)

References

1). Christodoulou S, Goula T, Ververidis A, Drosos G. Vitamin D and bone disease. Biomed Res Int. 2013; 2013:396541.
crossref
2). Holick MF. Vitamin D deficiency. N Engl J Med. 2007; 357(3):266–281.
crossref
3). Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008; 29(6):726–776.
crossref
4). Wacker M, Holick MF. Vitamin D – effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013; 5(1):111–148.
crossref
5). Pekkinen M, Viljakainen H, Saarnio E, Lamberg-Allardt C, Mäki-tie O. Vitamin D is a major determinant of bone mineral density at school age. PLoS One. 2012; 7(7):e40090.
crossref
6). Souberbielle JC, Body JJ, Lappe JM, Plebani M, Shoenfeld Y, Wang TJ, Bischoff-Ferrari HA, Cavalier E, Ebeling PR, Fardel-lone P, Gandini S, Gruson D, Guérin AP, Heickendorff L, Hollis BW, Ish-Shalom S, Jean G, von Landenberg P, Largura A, Olsson T, Pierrot-Deseilligny C, Pilz S, Tincani A, Valcour A, Zittermann A. Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: Recommendations for clinical practice. Autoimmun Rev. 2010; 9(11):709–715.
crossref
7). Muscogiuri G, Sorice GP, Ajjan R, Mezza T, Pilz S, Prioletta A, Scragg R, Volpe SL, Witham MD, Giaccari A. Can vitamin D deficiency cause diabetes and cardiovascular diseases? Present evidence and future perspectives. Nutr Metab Cardiovasc Dis. 2012; 22(2):81–87.
crossref
8). Pilz S, Tomaschitz A, März W, Drechsler C, Ritz E, Zittermann A, Cavalier E, Pieber TR, Lappe JM, Grant WB, Holick MF, Dekker JM. Vitamin D, cardiovascular disease and mortality. Clin Endocrinol (Oxf). 2011; 75(5):575–584.
crossref
9). Kienreich K, Tomaschitz A, Verheyen N, Pieber T, Gaksch M, Grübler MR, Pilz S. Vitamin D and cardiovascular disease. Nutrients. 2013; 5(8):3005–3021.
crossref
10). Kostoglou-Athanassiou I, Athanassiou P, Lyraki A, Raftakis I, Antoniadis C. Vitamin D and rheumatoid arthritis. Ther Adv Endocrinol Metab. 2012; 3(6):181–187.
11). Chitsaz A, Maracy M, Basiri K, Izadi Boroujeni M, Tanhaei AP, Rahimi M, Meamar R. 25-hydroxyvitamin d and severity of Parkinson's disease. Int J Endocrinol. 2013; 2013:689149.
crossref
12). Crane-Godreau MA, Black CC, Giustini AJ, Dechen T, Ryu J, Ju-kosky JA, Lee HK, Bessette K, Ratcliffe NR, Hoopes PJ, Fiering S, Kelly JA, Leiter JC. Modeling the influence of vitamin D deficiency on cigarette smoke-induced emphysema. Front Physiol. 2013; 4:132.
crossref
13). Holgate ST. The epidemic of asthma and allergy. J R Soc Med. 2004; 97(3):103–110.
crossref
14). Kheradmand F, Rishi K, Corry DB. Environmental contributions to the allergic asthma epidemic. Environ Health Perspect. 2002; 110(Suppl 4):553–556.
crossref
15). Gupta D, Vashi PG, Trukova K, Lis CG, Lammersfeld CA. Prevalence of serum vitamin D deficiency and insufficiency in cancer: review of the epidemiological literature. Exp Ther Med. 2011; 2(2):181–193.
crossref
16). Kinder BW, Hagaman JT. Could combating vitamin D deficiency reduce the incidence of autoimmune disease? Expert Rev Clin Immunol. 2011; 7(3):255–257.
crossref
17). Laway BA. Vitamin D deficiency and youth-onset diabetes in North India. Arq Bras Endocrinol Metabol. 2013; 57(2):159–160.
crossref
18). Chakhtoura M, Azar ST. The role of vitamin D deficiency in the incidence, progression, and complications of type 1 diabetes mellitus. Int J Endocrinol. 2013; 2013:148673.
crossref
19). Gunville CF, Mourani PM, Ginde AA. The role of vitamin D in prevention and treatment of infection. Inflamm Allergy Drug Targets. 2013; 12(4):239–245.
crossref
20). Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013; 5(7):2502–2521.
crossref
21). Sadat-Ali M, Al Elq A, Al-Farhan M, Sadat NA. Fortification with vitamin D: comparative study in the Saudi Arabian and US markets. J Family Community Med. 2013; 20(1):49–52.
crossref
22). Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008; 87(4):1080S–1086S.
crossref
23). Moan J, Porojnicu AC, Dahlback A, Setlow RB. Addressing the health benefits and risks, involving vitamin D or skin cancer, of increased sun exposure. Proc Natl Acad Sci U S A. 2008; 105(2):668–673.
crossref
24). Gonzalez H, Tarras-Wahlberg N, Strömdahl B, Juzeniene A, Moan J, Larkö O, Rosén A, Wennberg AM. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps. BMC Dermatol. 2007; 7:1.
crossref
25). Nair R, Maseeh A. Vitamin D: The “sunshine” vitamin. J Pharmacol Pharmacother. 2012; 3(2):118–126.
26). Visweswaran RK, Lekha H. Extraskeletal effects and manifestations of vitamin D deficiency. Indian J Endocrinol Metab. 2013; 17(4):602–610.
crossref
27). Hochberg Z, Templeton AR. Evolutionary perspective in skin color, vitamin D and its receptor. Hormones (Athens). 2010; 9(4):307–311.
crossref
28). Guessous I, Dudler V, Glatz N, Theler JM, Zoller O, Paccaud F, Burnier M, Bochud M. Swiss Survey on Salt Group. Vitamin D levels and associated factors: a population-based study in Switzerland. Swiss Med Wkly. 2012; 142:w13719.
crossref
29). Choi HS, Oh HJ, Choi H, Choi WH, Kim JG, Kim KM, Kim KJ, Rhee Y, Lim SK. Vitamin D insufficiency in Koreaa greater threat to younger generation: the Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J Clin Endocrinol Metab. 2011; 96(3):643–651.
crossref
30). Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2010: Korea National Health and Nutrition Examination Survey (KNHANES V-1). Cheongwon: Korea Centers for Disease Control and Prevention;2011.
31). Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2011: Korea National Health and Nutrition Examination Survey (KNHANES V-2). Cheongwon: Korea Centers for Disease Control and Prevention;2012.
32). Weisman Y. Vitamin D deficiency and insufficiency. Isr Med Assoc J. 2013; 15(7):377–378.
33). Haddad JG Jr, Rojanasathit S. Acute administration of 25-hy-droxycholecalciferol in man. J Clin Endocrinol Metab. 1976; 42(2):284–290.
crossref
34). Stamp TC, Round JM, Rowe DJ, Haddad JG. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972; 4(5831):9–12.
crossref
35). Birge SJ, Haddad JG. 25-hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest. 1975; 56(5):1100–1107.
crossref
36). Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011; 86(1):50–60.
crossref
37). Naugler C, Zhang J, Henne D, Woods P, Hemmelgarn BR. Association of vitamin D status with sociodemographic factors in Calgary, Alberta: an ecological study using Census Canada data. BMC Public Health. 2013; 13:316.
crossref
38). Harris SS, Soteriades E, Coolidge JA, Mudgal S, Dawson-Hughes B. Vitamin D insufficiency and hyperparathyroidism in a low income, multiracial, elderly population. J Clin Endocrinol Metab. 2000; 85(11):4125–4130.
crossref
39). Sulistyoningrum DC, Green TJ, Lear SA, Devlin AM. Ethnic-specific differences in vitamin D status is associated with adiposity. PLoS One. 2012; 7(8):e43159.
crossref
40). Sacheck J, Goodman E, Chui K, Chomitz V, Must A, Economos C. Vitamin D deficiency, adiposity, and cardiometabolic risk in urban schoolchildren. J Pediatr. 2011; 159(6):945–950.
crossref
41). Rajakumar K, de las Heras J, Chen TC, Lee S, Holick MF, Arslanian SA. Vitamin D status, adiposity, and lipids in black American and Caucasian children. J Clin Endocrinol Metab. 2011; 96(5):1560–1567.
crossref
42). Khor GL, Chee WS, Shariff ZM, Poh BK, Arumugam M, Rahman JA, Theobald HE. High prevalence of vitamin D insufficiency and its association with BMI-for-age among primary school children in Kuala Lumpur, Malaysia. BMC Public Health. 2011; 11:95.
crossref
43). Shahar DR, Schwarzfuchs D, Fraser D, Vardi H, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ, Shai I. DIRECT Group. Dairy calcium intake, serum vitamin D, and successful weight loss. Am J Clin Nutr. 2010; 92(5):1017–1022.
44). Tzotzas T, Papadopoulou FG, Tziomalos K, Karras S, Gastaris K, Perros P, Krassas GE. Rising serum 25-hydroxy-vitamin D levels after weight loss in obese women correlate with improvement in insulin resistance. J Clin Endocrinol Metab. 2010; 95(9):4251–4257.
crossref
45). Lagunova Z, Porojnicu AC, Lindberg F, Hexeberg S, Moan J. The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res. 2009; 29(9):3713–3720.
crossref
46). Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Jan-neh M, Reynolds J, Yanovski JA. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004; 89(3):1196–1199.
crossref
47). Absoud M, Cummins C, Lim MJ, Wassmer E, Shaw N. Prevalence and predictors of vitamin D insufficiency in children: a Great Britain population based study. PLoS One. 2011; 6(7):e22179.
crossref
48). Shirazi L, Almquist M, Malm J, Wirfält E, Manjer J. Determinants of serum levels of vitamin D: a study of lifestyle, menopausal status, dietary intake, serum calcium, and PTH. BMC Womens Health. 2013; 13(1):33.
crossref

Table 1.
General characteristics for participants of KNHANES 2010–2011 (age ≥ 10 years)
Parameter   Total Male Female
Estimated % Unweighted frequency Estimated % Unweighted frequency Estimated % Unweighted frequency
Age, yrs 10–19 14.7% 2,011 15.6% 1,057 13.9% 954
  20–29 15.4% 1,345 16.1% 553 14.7% 792
  30–39 18.1% 2,386 18.6% 990 17.6% 1,396
  40–49 18.9% 2,272 19.3% 1,013 18.6% 1,259
  50–59 15.4% 2,397 15.5% 1,010 15.4% 1,387
  60–69 9.1% 2,092 8.7% 952 9.5% 1,140
  70–79 6.4% 1,578 5.1% 692 7.6% 886
  80 ≤ 1.9% 375 1.2% 135 2.5% 240
  Age-total 100.0% 14,456 100.0% 6,402 100.0% 8,054
Region Dong 79.8% 11,525 80.0% 5,109 79.5% 6,416
  Town-village 20.2% 2,931 20.0% 1,293 20.5% 1,638
  Region-total 100.0% 14,456 100.0% 6,402 100.0% 8,054
Housing General house 68.2% 7,568 68.0% 3,370 68.4% 4,198
  Apartment 31.8% 6,888 32.0% 3,032 31.6% 3,856
  Housing-total 100.0% 14,456 100.0% 6,402 100.0% 8,054
Household income Poor 17.0% 2,753 15.1% 1,116 18.9% 1,637
  Fair-poor 27.9% 3,671 27.5% 1,625 28.3% 2,046
  Fair-rich 28.9% 3,981 30.1% 1,817 27.7% 2,164
  Rich 26.2% 3,856 27.3% 1,761 25.1% 2,095
  Houshold income-total 100.0% 14,261 100.0% 6,319 100.0% 7,942
Occupation Administrators & specialists 13.0% 1,535 15.9% 848 10.2% 687
  Clecks 8.6% 980 10.2% 557 6.9% 423
  Service workers & marketers 13.6% 1,549 12.9% 621 14.3% 928
  Agriculture, forestry & fishery 6.5% 1,029 8.0% 572 5.1% 457
  Engineers, technicians & assemblers 11.1% 1,153 19.7% 975 2.6% 178
  Manual laborers 8.0% 1,052 6.8% 406 9.2% 646
  Homemakers & students 39.1% 5,644 26.4% 1,617 51.7% 4,027
  Occupation-total 100.0% 12,942 100.0% 5,596 100.0% 7,346
Anemia No 92.5% 12,306 97.6% 5,783 87.3% 6,523
  Yes 7.5% 1,137 2.4% 209 12.7% 928
  Anemia-total 100.0% 13,443 100.0% 5,992 100.0% 7,451
BMI, kg/m 2 <18.5 8.3% 1,213 6.7% 483 10.0% 730
  18.5 to <23 41.4% 5,914 37.0% 2,366 45.7% 3,548
  23 to <25 21.4% 3,061 23.8% 1,498 19.0% 1,563
  25 to <30 24.9% 3,625 28.9% 1,807 20.9% 1,818
  30 ≤ 4.0% 499 3.6% 179 4.3% 320
  BMI-total 100.0% 14,312 100.0% 6,333 100.0% 7,979
Walking Yes 39.2% 4,662 41.7% 2,154 36.8% 2,508
  No 60.8% 7,598 58.3% 3,102 63.2% 4,496
  Walking-total 100.0% 12,260 100.0% 5,256 100.0% 7,004
Physical activity No 82.6% 9,868 80.1% 4,089 84.9% 5,779
  Medium 6.1% 759 5.8% 290 6.4% 469
  High 11.3% 1,215 14.1% 643 8.7% 572
  Physical activity-total 100.0% 11,842 100.0% 5,022 100.0% 6,820
25(OH) D, ng/mL Deficient (<10) 7.3% 973 5.1% 268 9.7% 705
  Insufficient (10 to <20) 64.4% 8,553 60.8% 3,537 68.0% 5,016
  Optimal (20 ≤) 28.3% 3,993 34.2% 2,216 22.4% 1,777
  25(OH) D-total 100.0% 13,519 100.0% 6,021 100.0% 7,498
Table 2.
25(OH) D concentration by several parameters in males (age ≥ 10 years)
Parameter Subgroups 25(OH) D, ng/mL 25(OH) D status, EF (Std. E.)% χ2 p
Estimated mean Std. E. 95% CI Deficient Insufficient Sufficient
Lower Upper
Age 10–19   16.95 .257 16.44 17.45 6.8 (1.2) 68.5 (2.0) 24.7 (1.9) 263.587 p < .001
  20–29   16.68 .297 16.10 17.27 5.2 (1.1) 73.6 (2.2) 21.2 (2.2)    
  30–39   17.65 .279 17.10 18.20 5.6 (0.9) 65.6 (2.0) 28.9 (2.1)    
  40–49   18.68 .290 18.11 19.25 4.6 (0.8) 56.7 (2.2) 38.7 (2.3)    
  50–59   19.81 .312 19.20 20.42 4.3 (0.8) 51.3 (2.2) 44.4 (2.2)    
  60–69   20.20 .342 19.53 20.88 2.8 (0.7) 50.7 (2.4) 46.5 (2.4)    
  70–79   20.51 .443 19.64 21.38 5.6 (1.4) 45.3 (2.6) 49.1 (2.8)    
  80 ≤   20.13 .987 18.19 22.07 5.5 (1.4) 36.4 (5.6) 58.1 (6.1)    
    Age-total         5.1 (0.5) 60.8 (1.2) 34.2 (1.3)    
Region Dong   17.66 .178 17.31 18.01 5.7 (0.5) 64.8 (1.1) 29.5 (1.2) 238.221 p < .001
  Town-village   20.99 .529 19.95 22.03 2.4 (0.7) 44.6 (3.6) 53.0 (3.8)    
    Region-total         5.1 (0.5) 60.8 (1.2) 34.2 (1.3)    
Housing General house   18.62 .255 18.12 19.12 5.4 (0.6) 58.2 (1.6) 36.5 (1.7) 036.997 p = .001
  Apartment   17.67 .223 17.23 18.10 4.4 (0.6) 66.3 (1.5) 29.3 (1.7)    
    Housing-total         5.1 (0.5) 60.8 (1.2) 34.2 (1.3)    
Household income Poor   18.64 .356 17.94 19.34 7.7 (1.3) 54.1 (2.3) 38.2 (2.6) 039.125 p = .002
  Fair-poor   18.42 .283 17.87 18.98 4.5 (0.7) 60.5 (2.0) 35.0 (2.1)    
  Fair-rich   17.85 .242 17.37 18.32 5.3 (0.8) 63.9 (1.8) 30.8 (1.9)    
  Rich   18.62 .226 18.18 19.07 3.7 (0.6) 60.9 (1.2) 35.4 (1.8)    
    Household income-total         5.0 (0.5) 60.7 (1.2) 34.3 (1.3)    
Occupation Administrators & specialists 17.26 .221 16.83 17.70 5.8 (1.1) 68.3 (2.0) 25.9 (2.0) 361.851 p < .001
  Clecks   17.36 .313 16.74 17.98 4.3 (1.0) 68.1 (2.6) 27.6 (2.6)    
  Service workers & marketers 18.01 .291 17.44 18.58 4.0 (0.9) 64.9 (2.2) 31.1 (2.2)    
  Agriculture, forestry & fishery 23.48 .600 22.30 24.66 1.2 (0.7) 27.8 (3.0) 71.0 (3.2)    
  Engineers, technicians & assemblers 18.89 .318 18.26 19.51 4.3 (0.8) 57.5 (2.3) 38.2 (2.3)    
  Manual laborers 18.58 .456 17.68 19.48 4.6 (1.4) 58.3 (3.3) 37.1 (3.4)    
  Homemakers & students 17.25 .242 16.77 17.72 8.2 (1.0) 63.9 (1.7) 27.9 (1.7)    
    Occupation-total         5.3 (0.5) 60.6 (1.2) 34.2 (1.3)    
Anemia No   18.29 .185 17.92 18.65 4.9 (0.4) 61.4 (1.2) 34.0 (1.3) 011.853 p = .007
  Yes   19.04 .544 17.97 20.11 10.3 (2.8) 50.5 (4.8) 39.2 (4.1)    
    Anemia-total         5.0 (0.4) 60.8 (1.2) 34.1 (1.3)    
Walking Yes   18.58 .234 18.12 19.04 4.8 (0.6) 59.2 (1.6) 36.0 (1.7) 000.492 p = .848
  No   18.42 .210 18.00 18.83 5.0 (0.6) 59.9 (1.4) 35.1 (1.5)    
    Walking-total         4.9 (0.4) 59.6 (1.3) 35.5 (1.4)    
Physical activity No   18.15 .196 17.77 18.54 5.7 (0.5) 60.8 (1.3) 33.5 (1.4) 043.255 p < .001
  Medium   20.92 .596 19.75 22.10 1.4 (0.7) 50.9 (3.8) 47.7 (3.9)    
  High   18.93 .333 18.27 19.58 2.3 (0.7) 59.5 (2.6) 38.2 (2.6)    
    Physical activity-total         5.0 (0.5) 60.1 (1.3) 35.0 (1.4)    
BMI, kg/m 2 <18.5 17.63 .490 16.67 18.60 9.6 (2.3) 60.6 (3.3) 29.8 (3.1) 063.421 p < .001
  18.5 to <23 18.10 .228 17.65 18.54 5.9 (0.7) 61.4 (1.5) 32.7 (1.6)    
  23 to <25 18.71 .250 18.22 19.21 4.6 (0.7) 58.3 (1.9) 37.2 (1.9)    
  25 to <30 18.64 .233 18.18 19.10 3.5 (0.5) 59.9 (1.8) 36.7 (1.8)    
  30 ≤ 16.73 .411 15.92 17.54 4.2 (1.8) 76.3 (3.7) 19.4 (3.5)    
    BMI-total         5.0 (0.5) 60.7 (1.2) 34.3 (1.3)    

EF: estimated frequency, Std. E.: standard error, CI: confidence interval

Table 3.
25(OH) D concentration by several parameters in females (age ≥ 10 years)
Parameter Subgroups 25(OH) D, ng/mL 25(OH) D status, EF (Std. E.)% χ2 p
Estimated mean Std. E. 95% CI Deficient Insufficient Optimum
Lower Upper
Age 10–19   15.61 .235 15.15 16.07 9.6 (1.2) 74.7 (2.0) 15.7 (1.7) 370.176 p < .001
  20–29   14.47 .251 13.97 14.96 15.1 (1.7) 73.2 (2.0) 11.7 (1.7)    
  30–39   15.79 .248 15.30 16.27 11.5 (1.7) 71.6 (1.6) 17.0 (1.6)    
  40–49   16.05 .222 15.62 16.49 9.4 (0.9) 70.8 (1.6) 17.0 (1.6)    
  50–59   17.92 .262 17.40 18.43 5.9 (0.7) 62.7 (1.8) 31.4 (1.9)    
  60–69   18.50 .320 17.87 19.13 6.6 (0.9) 56.6 (2.1) 36.8 (2.2)    
  70–79   18.20 .385 17.45 18.96 7.9 (1.3) 57.9 (2.5) 34.3 (2.5)    
  80 ≤   18.92 .707 17.53 20.31 6.2 (2.2) 55.6 (5.1) 38.2 (5.4)    
    Age-total         9.7 (0.6) 68.0 (1.0) 22.4 (1.1)    
Region Dong   16.09 .175 15.75 16.44 10.4 (0.7) 69.1 (1.1) 20.1 (1.1) 076.985 p < .001
  Town-village   17.85 .451 16.97 18.74 6.5 (1.1) 63.6 (2.6) 30.3 (2.9)    
    Region-total         9.7 (0.6) 68.0 (1.0) 22.4 (1.1)    
Housing General house   16.89 .228 16.44 17.34 8.7 (0.8) 66.1 (1.4) 25.2 (1.5) 082.141 p < .001
  Apartment   15.48 .191 15.11 15.86 11.8 (1.0) 72.0 (1.2) 16.3 (1.2)    
    Housing-total         9.7 (0.6) 68.0 (1.0) 22.4 (1.1)    
Household income Poor   17.41 .308 16.81 18.02 8.5 (1.0) 61.9 (1.9) 29.7 (2.0) 060.854 p < .001
  Fair-poor   16.44 .231 15.99 16.89 9.9 (0.9) 66.8 (1.6) 23.3 (1.6)    
  Fair-rich   16.02 .209 15.61 16.43 10.0 (1.0) 71.0 (1.4) 19.0 (1.3)    
  Rich   16.30 .218 15.87 16.73 9.8 (1.0) 70.1 (1.6) 20.1 (1.4)    
    Household income-total         9.7 (0.6) 67.9 (1.0) 22.4 (1.1)    
Occupation Administrators & specialists 15.36 .285 14.80 15.92 11.7 (1.7) 73.8 (2.2) 14.5 (1.7) 204.392 p < .001
  Clecks 14.94 .311 14.33 15.55 10.3 (1.8) 77.0 (2.5) 12.7 (2.1)    
  Service workers & marketers 16.32 .280 15.77 16.87 9.5 (1.1) 69.0 (2.1) 21.5 (2.0)    
  Agriculture, forestry & fishery 20.52 .590 19.36 21.68 3.3 (1.1) 48.5 (3.8) 48.1 (3.8)    
  Engineers, technicians & assemblers s 15.95 .517 14.93 16.96 11.6 (3.0) 67.3 (4.4) 21.2 (3.9)    
  Manual laborers 16.94 .329 16.30 17.59 8.8 (1.4) 64.1 (2.4) 27.1 (2.5)    
  Homemakers & students 16.45 .185 16.08 16.81 10.5 (0.8) 67.0 (1.2) 22.5 (1.3)    
    Occupation-total         10.0 (0.7) 67.5 (1.0) 22.5 (1.1)    
Anemia No   16.58 .173 16.24 16.92 9.1 (0.6) 67.9 (1.0) 23.0 (1.1) 027.584 p < .001
  Yes   15.45 .243 14.97 15.92 13.3 (1.4) 69.5 (1.9) 17.2 (1.6)    
    Anemia-total         9.7 (0.6) 68.1 (1.0) 22.3 (1.1)    
Walking Yes   16.76 .227 16.31 17.21 8.6 (0.9) 67.4 (1.5) 24.0 (1.5) 007.135 p = .133
  No   16.39 .181 16.04 16.75 10.6 (0.8) 66.7 (1.1) 22.7 (1.2)    
    Walking-total         9.8 (0.7) 67.0 (1.0) 23.2 (1.1)    
Physical activity No   16.35 .173 16.01 16.69 10.6 (0.7) 66.8 (1.1) 22.6 (1.1) 014.766 p = .062
  Medium   17.43 .493 16.46 18.40 6.3 (1.4) 66.8 (3.4) 26.9 (3.4)    
  High   17.06 .329 16.42 17.71 7.6 (1.3) 68.3 (2.6) 24.1 (2.5)    
    Physical activity-total         10.1 (0.7) 66.9 (1.1) 23.0 (1.1)    
BMI, kg/m 2 <18.5   16.05 .280 15.50 16.60 10.1 (1.5) 69.0 (2.2) 20.9 (2.0)    
  18.5 to <23   16.18 .181 15.82 16.54 10.5 (0.8) 68.9 (1.2) 20.6 (1.2) 026.351 p = .029
  23 to <25   16.86 .255 16.35 17.36 9.4 (1.1) 67.1 (1.6) 23.5 (1.6)    
  25 to <30   16.91 .237 16.44 17.38 7.6 (0.9) 66.5 (1.7) 25.9 (1.7)    
  30 ≤   16.04 .407 15.24 16.84 10.9 (2.4) 66.7 (3.4) 22.4 (3.0)    
    BMI-total         9.6 (0.6) 68.0 (1.0) 22.4 (1.1)    

EF: estimated frequency, Std. E.: standard error, CI: confidence interval

Table 4.
Model effect analysis by CSGLM 1)
Source df1 df2 Wald F Significance
(Correct model) 21 339 29.005 <.001
(Intercept) 01 359 1,322.310 <.001
Sex 01 359 121.437 <.001
Region 01 359 4.760 .030
Housing 01 359 2.716 .100
Household income 03 357 2.435 .065
Occupation 06 354 9.624 <.001
Anemia 01 359 21.853 <.001
BMI 04 356 2.119 .078
Physical acitivity 02 358 13.746 <.001
Walking 01 359 2.041 .154
Age 01 359 150.116 <.001

1) Model: vitamin D = (intercept) + sex + residence + housing + household income + occupation + anemia + BMI + physical activity + walking + age

Table 5.
Parameter estimates 1) by CSGLM
Parameter   Estimates Standard error 95% confidence interval Hypothesis test
Lower Upper t df Significance
(Intercept)   12.4112) .732 10.971 13.852 16.944 359 <.001
Sex Male 1.7032) .155 1.399 2.007 11.020 359 <.001
  Female .0002)            
Region Dong –1.0432) .478 –1.983 –.103 –2.182 359 .030
  Town-village .0002)            
Housing General house .4882) .296 –.094 1.070 1.648 359 .100
  Apartment .0002)            
Household income Poor –.5902) .249 –1.079 –.100 –2.370 359 .018
  Fair-poor –.2712) .229 –.722 .180 –1.182 359 .238
  Fair-rich –.4332) .213 –.853 –.014 –2.030 359 .043
  Rich .0002)            
Occupation Administrators & specialists –.3822) .226 –.828 .063 –1.690 359 .092
  Clerks –.4252) .259 –.935 .084 –1.641 359 .102
  Service workers & marketers .0132) .221 –.422 .447 .058 359 .954
  Agriculture, forestry & fishery 2.8362) .482 1.888 3.785 5.883 359 <.001
  Engineers, technicians & assemblers .5022) .267 –.023 1.026 1.880 359 .061
  Manual laborers –.0352) .277 –.581 .510 –.128 359 .898
  Homemakers & students .0002)            
Anemia No 1.0272) .220 .595 1.459 4.675 359 <.001
  Yes .0002)            
BMI, kg/m 2 <18.5 .5322) .442 –.337 1.401 1.205 359 .229
  18.5 to <23 .6562) .305 .056 1.257 2.149 359 .032
  23 to <25 .8412) .302 .246 1.435 2.780 359 .006
  25 to <30 .7272) .297 .143 1.311 2.450 359 .015
  ≥30 .0002)            
Physical activity High .7602) .235 .298 1.222 3.236 359 .001
  Mid 1.2102) .279 .662 1.758 4.340 359 <.001
  No .0002)            
Walking No –.2082) .146 –.495 .079 –1.428 359 .154
  Yes .0002)            
Age   .0712) .006 .059 .082 12.252 359 <.001

1) Model: 25(OH) D = (intercept) + sex + region + housing + household income + occupation + anemia + BMI + physical activity + walking + age

TOOLS
Similar articles