Journal List > J Nutr Health > v.46(6) > 1081317

J Nutr Health. 2013 Dec;46(6):511-520. Korean.
Published online December 31, 2013.  https://doi.org/10.4163/jnh.2013.46.6.511
© 2013 The Korean Nutrition Society
Association of MCP-1 polymorphism with cardiovascular disease risk factors in Korean elderly
Hee Jung Park
Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea.

To whom correspondence should be addressed. (Email: 5919park@gmail.com )
Received October 04, 2013; Revised October 14, 2013; Accepted November 28, 2013.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


Abstract

Monocyte chemoattractant protein-1 (MCP-1) plays an important role in cardiovascular disease (CVD). Genetic polymorphism in the regulatory regions of MCP-1 could affect MCP-1 expression. The purpose of the study was to explore the possible association of MCP-1 -2518 A/G genetic polymorphism and CVD risk factors in the elderly Korean population. Dietary, anthropometric, and biochemical factors were assessed in 168 subjects. The frequency of A/A, G/A, and G/G genotypes was 14.2%, 45.8%, and 40.0%, respectively. The blood level of MCP-1 was significantly higher in subjects with A/A genotype. The MCP-1 level was significantly higher in A/A genotype with hypercholesterolemia than in other genotypes. Meat intake and percent energy from lipids were significantly positively correlated with the MCP-1 level, especially, stronger in A/A genotype. In the stepwise discriminant analysis, TNF-α level, meat intake, HDL-C were associated with MCP-1 in all subjects (model R2 = 24%). TNF-α level, sugar intake, cholesterol intake, and meat intake affected MCP-1 in A/A genotype (model R2 = 82%), but not in G/A or G/G. In conclusion, subjects possessing A/A genotype exhibited higher levels of MCP-1 than other genotypes in Korean elders. Further, meat, sugar, and cholesterol intakes affected the MCP-1 level. Therefore, the decrement of meat, sugar, and cholesterol intakes helps to normalize the MCP-1 level and can decrease CVD risk in A/A genotype.

Keywords: MCP-1; MCP-1 polymorphism; dietary factors; Korean elders

Figures


Fig. 1
The level of MCP-1 according to genotype in the subject with dyslipideamia and obese. ab: Different superscript letters indicate the comparison with significant differences according to MCP-1 genotypes within the same category by GLM test at p < 0.05.
Click for larger image


Fig. 2
The plasma MCP-1 level according to intake of meat (A), sugar (B), % energy from carbohydrate (C), % energy from lipid (D) by genotype. ab: Different superscript letters indicate the comparison with significant differences according to MCP-1 genotypes within the same category by GLM test at p < 0.05. *: Significant differences according to intake levels within the same genotypes by Student's t-test, p < 0.05.
Click for larger image

Tables


Table 1
Clinical characteristics of subjects based on MCP-1 polymorphism
Click for larger image


Table 2
Daily food intakes by food groups based on MCP-1 polymorphism
Click for larger image


Table 3
Daily nutrient intakes based on MCP-1 polymorphism
Click for larger image


Table 4
Immune variables based on MCP-1 polymorphism
Click for larger image


Table 5
Pearson's correlation coefficients between food intakes and plasma MCP-1 level
Click for larger image


Table 6
The result of discriminant analysis for factors related the MCP-1 level
Click for larger image

References
1. Statistics Korea. The Cause of Death Statistics 2011. Seoul: Statistics Korea; 2012. pp. 3.
2. Koh KK, Han SH, Quon MJ. Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions. J Am Coll Cardiol 2005;46(11):1978–1985.
3. Reape TJ, Groot PH. Chemokines and atherosclerosis. Atherosclerosis 1999;147(2):213–225.
4. Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL. Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol 2009;41(5):998–1001.
5. Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Särkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A 1991;88(12):5252–5256.
6. Nelken NA, Coughlin SR, Gordon D, Wilcox JN. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 1991;88(4):1121–1127.
7. Seli E, Pehlivan T, Selam B, Garcia-Velasco JA, Arici A. Estradiol down-regulates MCP-1 expression in human coronary artery endothelial cells. Fertil Steril 2002;77(3):542–547.
8. de Lemos JA, Morrow DA, Sabatine MS, Murphy SA, Gibson CM, Antman EM, McCabe CH, Cannon CP, Braunwald E. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 2003;107(5):690–695.
9. Serrano-Martínez M, Palacios M, Lezaun R. Monocyte chemoattractant protein-1 concentration in coronary sinus blood and severity of coronary disease. Circulation 2003;108(10):e75.
10. Cipollone F, Marini M, Fazia M, Pini B, Iezzi A, Reale M, Paloscia L, Materazzo G, D'Annunzio E, Conti P, Chiarelli F, Cuccurullo F, Mezzetti A. Elevated circulating levels of monocyte chemoattractant protein-1 in patients with restenosis after coronary angioplasty. Arterioscler Thromb Vasc Biol 2001;21(3):327–334.
11. Deo R, Khera A, McGuire DK, Murphy SA, Meo Neto Jde P, Morrow DA, de Lemos JA. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J Am Coll Cardiol 2004;44(9):1812–1818.
12. Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 1999;259(2):344–348.
13. Kroner A, Mäurer M, Loserth S, Kleinschnitz C, Hemmer B, Rosche B, Toyka KV, Rieckmann P. Analysis of the monocyte chemoattractant protein 1 -2518 promoter polymorphism in patients with multiple sclerosis. Tissue Antigens 2004;64(1):70–73.
14. Krüger B, Schröppel B, Ashkan R, Marder B, Zülke C, Murphy B, Krämer BK, Fischereder M. A monocyte chemoattractant protein-1 (MCP-1) polymorphism and outcome after renal transplantation. J Am Soc Nephrol 2002;13(10):2585–2589.
15. Szalai C, Duba J, Prohászka Z, Kalina A, Szabó T, Nagy B, Horváth L, Császár A. Involvement of polymorphisms in the chemokine system in the susceptibility for coronary artery disease (CAD). Coincidence of elevated Lp(a) and MCP-1 -2518 G/G genotype in CAD patients. Atherosclerosis 2001;158(1):233–239.
16. Tabara Y, Kohara K, Yamamoto Y, Igase M, Nakura J, Kondo I, Miki T. Polymorphism of the monocyte chemoattractant protein (MCP-1) gene is associated with the plasma level of MCP-1 but not with carotid intima-media thickness. Hypertens Res 2003;26(9):677–683.
17. Buraczynska M, Bednarek-Skublewska A, Buraczynska K, Ksiazek A. Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism as a potential risk factor for cardiovascular disease in hemodialyzed patients. Cytokine 2008;44(3):361–365.
18. Jeon HJ, Choi HJ, Park BH, Lee YH, Oh T. Association of monocyte chemoattractant protein-1 (MCP-1) 2518A/G polymorphism with proliferative diabetic retinopathy in Korean type 2 diabetes. Yonsei Med J 2013;54(3):621–625.
19. Moon JY, Jeong L, Lee S, Jeong K, Lee T, Ihm CG, Suh J, Kim J, Jung YY, Chung JH. Association of polymorphisms in monocyte chemoattractant protein-1 promoter with diabetic kidney failure in Korean patients with type 2 diabetes mellitus. J Korean Med Sci 2007;22(5):810–814.
20. Stang J, Zephier EM, Story M, Himes JH, Yeh JL, Welty T, Howard BV. Dietary intakes of nutrients thought to modify cardiovascular risk from three groups of American Indians: the Strong Heart Dietary Study, Phase II. J Am Diet Assoc 2005;105(12):1895–1903.
21. Tell GS, Evans GW, Folsom AR, Shimakawa T, Carpenter MA, Heiss G. Dietary fat intake and carotid artery wall thickness: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol 1994;139(10):979–989.
22. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 1999;99(6):779–785.
23. Kreijkamp-Kaspers S, Kok L, Bots ML, Grobbee DE, Lampe JW, van der Schouw YT. Randomized controlled trial of the effects of soy protein containing isoflavones on vascular function in postmenopausal women. Am J Clin Nutr 2005;81(1):189–195.
24. Jiang R, Jacobs DR Jr, Mayer-Davis E, Szklo M, Herrington D, Jenny NS, Kronmal R, Barr RG. Nut and seed consumption and inflammatory markers in the multi-ethnic study of atherosclerosis. Am J Epidemiol 2006;163(3):222–231.
25. Park HJ. In: Association of MCP-1 polymorphism with cardiovascular risk factors in Korean elderly [Ph.D. thesis]. Seoul: Ewha Womans University; 2007.
26. The Korean Nutrition Society; Korean Nutrition Information Center. Nutritional assessment program, 'CAN pro 3.0' [CD-ROM]. Seoul: The Korean Nutrition Society; 2006
27. The Korean Nutrition Society. Dietary reference intakes for Koreans. Seoul: The Korean Nutrition Society; 2010.
28. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18(6):499–502.
29. Kitamoto S, Egashira K. Anti-monocyte chemoattractant protein-1 gene therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 2003;1(3):393–400.
30. Okopień B, Haberka M, Cwalina L, Kowalski J, Belowski D, Madej A, Zieliński M, Krysiak R, Labuzek K, Kalina Z, Herman ZS. Plasma cytokines as predictors of coronary heart disease. Res Commun Mol Pathol Pharmacol 2002;112(1-4):5–15.
31. Ozyürek AR, Gürses D, Ulger Z, Levent E, Bakiler AR, Berdeli A. Allelic frequency of the MCP-1 promoter -2518 polymorphism in the Turkish population and in Turkish patients with juvenile rheumatoid arthritis. Clin Rheumatol 2007;26(4):546–550.
32. Kim HL, Yang SH, Oh YK, Lee JE, Oh JE, Yoon HJ, Kim YS, Ahn CR, Han JS, Kim SG, Lee JS. The effects of polymorphism in the MCP-1 gene regulatory region on MCP-1 expression and the manifestation of lupus nephritis. Korean J Nephrol 2002;21(1):137–144.
33. Pae CU, Kim JJ, Yu HS, Lee CU, Lee SJ, Jun TY, Lee C, Paik IH. Monocyte chemoattractant protein-1 promoter -2518 polymorphism may have an influence on clinical heterogeneity of bipolar I disorder in the Korean population. Neuropsychobiology 2004;49(3):111–114.
34. Zhong C, Luzhan Z, Genshan M, Jiahong W, Xiaoli Z, Qi Q. Monocyte chemoattractant protein-1-2518 G/A polymorphism, plasma levels, and premature stable coronary artery disease. Mol Biol Rep 2010;37(1):7–12.
35. Pola R, Flex A, Gaetani E, Proia AS, Papaleo P, Di Giorgio A, Straface G, Pecorini G, Serricchio M, Pola P. Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism and risk of Alzheimer's disease in Italians. Exp Gerontol 2004;39(8):1249–1252.
36. Zietz B, Büchler C, Herfarth H, Müller-Ladner U, Spiegel D, Schölmerich J, Schäffler A. Caucasian patients with type 2 diabetes mellitus have elevated levels of monocyte chemoattractant protein-1 that are not influenced by the -2518 A-->G promoter polymorphism. Diabetes Obes Metab 2005;7(5):570–578.
37. Aguilar F, González-Escribano MF, Sánchez-Román J, Núñez-Roldán A. MCP-1 promoter polymorphism in Spanish patients with systemic lupus erythematosus. Tissue Antigens 2001;58(5):335–338.
38. Penz P, Bucova M, Lietava J, Blazicek P, Paulovicova E, Mrazek F, Bernadic M, Buckingham TA, Petrek M. MCP-1 -2518 A/G gene polymorphism is associated with blood pressure in ischemic heart disease asymptomatic subjects. Bratisl Lek Listy 2010;111(8):420–425.
39. Sonnenberg L, Pencina M, Kimokoti R, Quatromoni P, Nam BH, D'Agostino R, Meigs JB, Ordovas J, Cobain M, Millen B. Dietary patterns and the metabolic syndrome in obese and non-obese Framingham women. Obes Res 2005;13(1):153–162.
40. Franz MJ, Bantle JP, Beebe CA, Brunzell JD, Chiasson JL, Garg A, Holzmeister LA, Hoogwerf B, Mayer-Davis E, Mooradian AD, Purnell JQ, Wheeler M. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002;25(1):148–198.
41. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC. Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 1997;337(21):1491–1499.
42. Shishehbor F, Roche HM, Gibney MJ. The effect of low and moderate fat intakes on the postprandial lipaemic and hormonal responses in healthy volunteers. Br J Nutr 1999;81(1):25–30.
43. German JB. Genetic dietetics: nutrigenomics and the future of dietetics practice. J Am Diet Assoc 2005;105(4):530–531.
44. Tanasescu M, Cho E, Manson JE, Hu FB. Dietary fat and cholesterol and the risk of cardiovascular disease among women with type 2 diabetes. Am J Clin Nutr 2004;79(6):999–1005.