1. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005; 129:113–121.
2. Cohen JC, Hortaon JD, Horbbes HH. Human fatty liver disease: old questions and new insights. Science. 2011; 332:1519–1523.
3. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004; 114:147–152.
4. Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004; 10:355–361.
5. Lei F, Zhang ZN, Wang W, Xing DM, Xie WD, Su N, Du LJ. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced ovese mice. Int J Obes (Lond). 2007; 31:1023–1029.
6. Watanabe T, Hata K, Hiwatashi K, Hori K, Suzuki N, Itoh H. Suppression of murine peradipocyte differentiation and reduction of visceral fat accumulation by a Petasites Japonicus ethanol extract in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2010; 74:499–503.
7. Willebrords J, Pereira I, Maes M, Yanguas S, Colle I, Bossche B, Silva T, Oliveira C, Andraus W, Alves V, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res. 2015; 59:106–125.
8. Tannapfel A, Denk H, Dienes HP, Langner C, Schirmacher P, Trauner M, Flott-Rahmel B. Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Virchows Arch. 2011; 458:511–523.
9. Burt AD, Mutton A, Day CP. Diagnosis and interpretation of steatosis and steatohepatitis. Semin Diagn Pathol. 1998; 15:246–258.
10. Tolman KG, Dalpiaz AS. Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag. 2007; 3:1153–1163.
11. Chalasani N, Guo X, Loomba R, Goodarzi MO, Haritunians T, Kwon S, Cui J, Taylor KD, Wilson L, Cummings OW, Chen YD, Rotter JI. Nonalcoholic Steatohepatitis Clinical Research Network. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology. 2010; 139:1567–1576. 1576.e1–1576.e6.
12. Anstee QM, Day CP. The genetics NAFLD. Nat Rev Gastroenterol Hepatol. 2013; 10:645–655.
13. Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010; 12:Suppl 2. 83–92.
14. Sung YY, Yoon Y, Kim SJ, Yang WK, Kim HK. Anti-obesity activity of Allium fistulosum L. extract by downregulation of the expression of lipogenic genes in high-fat diet-induced obese mice. Mol Med Rep. 2011; 4:431–435.
15. Fenwick GR, Hanley AB. The genius Allium-part 1. Crit Rev Food Sci Nutr. 1985; 22:199–271.
16. Chen JH, Chen HI, Wang JS, Tsai SJ, Jen CJ. Effects of Welsh onion extracts on human platelet function in vitro. Life Sci. 2000; 66:1571–1579.
17. Yamamoto Y, Aoyama S, Hamaguchi N, Rhi GS. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem. 2005; 69:1311–1317.
18. Yamamoto Y, Yasuoka A. Welsh onion attenuates hyperlipidemia in rats fed on high-fat high-sucrose diet. Biosci Biotechnol Biochem. 2010; 74:402–404.
19. Beuchat LR. Control of foodborne pathogens and spoilage microorganisms by naturally occurring antimicrobials. In : Wilson CL, Droby S, editors. Microbial Food Contamination. Boca Raton (FL): CRC Press;2001. p. 149–170.
20. Pagano G, Pacini G, Musso G, Gambino R, Mecca F, Depetris N, Cassader M, David E, Cavallo-Perin P, Rizzetto M. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic. Hepatology. 2002; 35:367–372.
21. Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010; 2:95–104.
22. Zhu C, Xie P, Zhao F, Zhang L, An W, Zhan Y. Mechanism of the promotion of steatotic HepG2 cell apoptosis by cholesterol. Int J Clin Exp Pathol. 2014; 7:6807–6813.
23. Kang OH, Kin SB, Seo YS, Joung DK, Mun SH, Choi JG, Lee YM, Kang DG, Lee HS, Kwon DY. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur Rev Med Pharmacol Sci. 2013; 17:2578–2586.
24. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002; 109:1125–1131.
25. Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation o sterol regylatiory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A. 1998; 95:5987–5992.
26. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A. 2003; 100:12027–12032.
27. Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest. 1997; 99:838–845.
28. Wang BS, Huang GJ, Lu YH, Chang LW. Anti-inflammatory effects of an aqueous extract of Welsh onion green leaves in mice. Food Chem. 2013; 138:751–756.
29. Wang BS, Chen JH, Liang YC, Duh PD. Effects of welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chem. 2005; 91:147–155.
30. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007; 15:252–259.
31. Sala A, Folco G. Actual role of prostaglandins in inflammation. Drug Investig. 1991; 3:4–9.
32. Aoyama S, Hiraike T, Yamamoto Y. Antioxidant, lipid-lowering and antihypertensive effects of red welsh onion (Allium fistulosum) in spontaneously hypertensive rats. Food Sci Technol Res. 2008; 14:99–103.
33. Asrih M, Jornayvaz FR. Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol. 2013; 218:R25–R36.
34. Tilg H, Moschen AR. Evolution on inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010; 52:1836–1846.
35. Lima-Cabello E, Garcia-Mediavilla MV, Miguilena-Colina ME, Vargas-Castrillon J, Lozano-Rodriguez T, Femandez-Bermejo M, Olcoz JL, Conzalez-Gallego J, Garcia-Monzon C, Sanchez-Campos S. Enhanced expression on pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond). 2011; 120:239–250.
36. Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, MeComico A, Masuoko H, Gores G. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2011; 301:G825–G834.
37. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistrere WF, Woods SC, Seeley RJ. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010; 52:934–944.
38. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol. 2008; 295:G987–G995.
39. Machado MV, Michelotti GA, Xie G, Almeida Pereira T, Boursier J, Bohnic B, Guy CD, Diehl AM. Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS One. 2015; 10:e0127991.
40. Almind K, Kahn CR. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes. 2004; 53:3274–3285.
41. Hoevenaars EP, Keijer J, Swarts HJ, Snaas-Alders S, Bekkenkamp-Grovenstein M, van Schothorst EM. Effects of dietary history on energy metabolism and physiological parameters in C57BL/6J mice. Exp Physiol. 2013; 98:1053–1062.
42. Bordia A, Verma SK, Vyas AE, Khabya BL, Rathore AS, Bhu N, Dedi HK. Effect of essential oil and garlic on experimental atherosclerosis in rabbits. Atherosclerosis. 1977; 26:379–386.
43. Bordia A, Verma SK, Srivastava KC. Effect of garlic (Allium sativum) on blood lipids, blood sugar, fibrinogen and fibrinolytic activity in patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids. 1998; 58:257–263.
44. Thomson M, Al-Qattan KK, Bordia T, Ali M. Including garlic in the diet may help lower blood glucose, cholesterol, and triglycerides. J Nutr. 2006; 136:800S–802S.
45. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016; 7:27–31.