Journal List > Korean J Nutr > v.46(2) > 1043974

Lee, Lee, Lee, and Park: Maternal and lifestyle effect on bone mineral density in Korean children and adolescents aged 8-19∗

Abstract

Higher bone mineral density (BMD) at a young age, calcium intake, and exercise are important for prevention of osteoporosis later in life. We examined familial effects of BMD between mothers and children and adolescents aged 8-19 in Cheonan, Korea and the relationships between BMD and lifestyle parameters, including: food and nutrient intake and exercise. For daughters and sons, significant differences in BMD were observed at the three bone sites (total femur, femur neck, and lumbar spine) according to age, gender, body mass index, exercise, and milk consumption, compared to the reference value for each classification category. Mean differences in children's BMD were observed according to maternal BMD. Energy and calcium intake were lower in both children and mothers in comparison to the estimated daily energy requirement; however, their protein intake was much greater than the daily recommended intake. After adjusting for age and gender and for mother's age, body mass index, and total calorie intake, results of the food frequency test showed an association of a higher intake of meat, meat products, milk and milk products with greater BMD of total femur, femur neck, and lumbar spine of children. In addition, exercise was positively associated with higher BMD. Regression analysis showed a positive association of BMD with age, male gender, exercise, and mother's BMD. In conclusion, after adjustment for environmental parameters, maternal BMD had a positive influence on BMD in daughters and sons. This finding suggests that parents need to check their BMD in order to determine whether their children are at increased risk of low BMD.

REFERENCES

1). The Korean Society for Bone and Mineral Research. Physician’s guide for diagnosis & treatment of osteoporosis. Seoul: The Korean Society for Bone and Mineral Research;2008.
2). Kelly PJ, Eisman JA. Osteoporosis: genetic effects on bone turnover and bone density. Ann Med. 1993; 25(2):99–101.
crossref
3). Krall EA, Dawson-Hughes B. Heritable and lifestyle determinants of bone mineral density. J Bone Miner Res. 1993; 8(1):1–9.
crossref
4). Sandhu SK, Hampson G. The pathogenesis, diagnosis, investigation and management of osteoporosis. J Clin Pathol. 2011; 64(12):1042–1050.
crossref
5). Ferry B, Duclos M, Burt L, Therre P, Le Gall F, Jaffré C, Courteix D. Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab. 2011; 29(3):342–351.
crossref
6). Lee BK, Park S, Kim Y. Age- and gender-specific associations between low serum 25-hydroxyvitamin D level and type 2 diabetes in the Korean general population: analysis of 2008-2009 Korean National Health and Nutrition Examination Survey data. Asia Pac J Clin Nutr. 2012; 21(4):536–546.
7). Cadogan J, Blumsohn A, Barker ME, Eastell R. A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. J Bone Miner Res. 1998; 13(10):1602–1612.
crossref
8). Rizzoli R, Bonjour JP. Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int. 1999; 9(Suppl 2):S17-S23.
crossref
9). Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991; 73(3):555–563.
crossref
10). Miller LE, Nickols-Richardson SM, Wootten DF, Ramp WK, Herbert WG. Relationships among bone mineral density, body composition, and isokinetic strength in young women. Calcif Tissue Int. 2004; 74(3):229–235.
crossref
11). Ahn HS, Kim SH, Lee SS. A study of factors affecting bone mineral density in Korean adolescents: anthropometric measurements, life style, and other environmental factors. Korean J Nutr. 2005; 38(3):242–250.
12). Cvijetic S, Colic Baric I, Satalic Z. Influence of heredity and environment on peak bone density: a parent-offspring study. J Clin Densitom. 2010; 13(3):301–306.
13). Korean Endocrine Society; Korean Society for the Study of Obesity. Management of obesity, 2010 recommendation. Endocrinol Metab. 2010; 25(4):301–304.
14). Korea Centers for Disease Control and Prevention, Ministry of Health and Welfare. Korea Health Statistics 2010: Korea National Health and Nutrition Examination Survey. Cheongwon: Korea Centers for Disease Control and Prevention;2010.
15). Lee EY, Kim D, Kim KM, Kim KJ, Choi HS, Rhee Y, Lim SK. Age-related bone mineral density patterns in Koreans (KNHANES IV). J Clin Endocrinol Metab. 2012; 97(9):3310–3318.
crossref
16). Drake MT, Murad MH, Mauck KF, Lane MA, Undavalli C, El-raiyah T, Stuart LM, Prasad C, Shahrour A, Mullan RJ, Hazem A, Erwin PJ, Montori VM. Clinical review. Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012; 97(6):1861–1870.
17). Moro M, van der Meulen MC, Kiratli BJ, Marcus R, Bachrach LK, Carter DR. Body mass is the primary determinant of mid-femoral bone acquisition during adolescent growth. Bone. 1996; 19(5):519–526.
crossref
18). Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000; 100(2):197–207.
19). Nam SY, Lee EJ, Kim KR, Lee HC, Nam MS, Cho JH, Huh KB. Long-term administration of acipimox potentiates growth hormone response to growth hormone-releasing hormone by decreasing serum free fatty acid in obesity. Metabolism. 1996; 45(5):594–597.
crossref
20). Chang KY, Yang HJ, Shin YK, Park SH, Lee KH, Lee KY. The influences of obesity on bone mineral density in children. J Korean Soc Pediatr Endocrinol. 2001; 6(2):129–136.
21). Ellis KJ, Shypailo RJ, Wong WW, Abrams SA. Bone mineral mass in overweight and obese children: diminished or enhanced? Acta Diabetol. 2003; 40(Suppl 1):S274-S277.
crossref
22). Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr. 2004; 80(2):514–523.
crossref
23). Hunt JR, Johnson LK, Fariba Roughead ZK. Dietary protein and calcium interact to influence calcium retention: a controlled feeding study. Am J Clin Nutr. 2009; 89(5):1357–1365.
crossref
24). Barzel US, Massey LK. Excess dietary protein can adversely affect bone. J Nutr. 1998; 128(6):1051–1053.
crossref
25). Fenton TR, Eliasziw M, Lyon AW, Tough SC, Hanley DA. Meta-analysis of the quantity of calcium excretion associated with the net acid excretion of the modern diet under the acid-ash diet hypothesis. Am J Clin Nutr. 2008; 88(4):1159–1166.
crossref
26). Remer T. Influence of diet on acid-base balance. Semin Dial. 2000; 13(4):221–226.
27). Zhang Q, Ma G, Greenfield H, Zhu K, Du X, Foo LH, Hu X, Fraser DR. The association between dietary protein intake and bone mass accretion in pubertal girls with low calcium intakes. Br J Nutr. 2010; 103(5):714–723.
crossref
28). Zou ZY, Lin XM, Xu XR, Xu R, Ma L, Li Y, Wang MF. Evaluation of milk basic protein supplementation on bone density and bone metabolism in Chinese young women. Eur J Nutr. 2009; 48(5):301–306.
crossref
29). Ballor DL, Keesey RE. A meta-analysis of the factors affecting exercise-induced changes in body mass, fat mass and fat-free mass in males and females. Int J Obes. 1991; 15(11):717–726.
30). Choi BH, Kim SM. Report on the crosstabulation analysis about bone mineral density test of workers. Korean J Orient Physiol Pathol. 2009; 23(6):1508–1512.
31). Yi KO, Lee YS. The differing effects of sports training and dietary habits on the menstrual cycle, body composition and bone mineral density, in elite Korean female athletes. Korean J Phys Educ. 2002; 41(4):529–539.
32). Gambert SR, Schultz BM, Hamdy RC. Osteoporosis. Clinical features, prevention, and treatment. Endocrinol Metab Clin North Am. 1995; 24(2):317–371.
crossref
33). Kelley G. Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998; 46(2):143–152.
crossref
34). Nordström P, Lorentzon R. Influence of heredity and environment on bone density in adolescent boys: a parent-offspring study. Osteoporos Int. 1999; 10(4):271–277.
crossref
35). Ohta H, Kuroda T, Onoe Y, Nakano C, Yoshikata R, Ishitani K, Hashimoto K, Kume M. Familial correlation of bone mineral density, birth data and lifestyle factors among adolescent daughters, mothers and grandmothers. J Bone Miner Metab. 2010; 28(6):690–695.
crossref

Table 1.
Bone mineral density (BMD) of total femur, femur neck and lumbar spine of children according to general characteristics
Classification variables n Bone mineral density (g/cm 2)
Total femur Femur neck Lumbar spine
Total 199 0.853 (0.836-0.870) 0.831 (0.813-0.848) 0.873 (0.852-0.893)
Gender        
 Boy 104 0.875 (0.851-0.899) 0.855 (0.830-0.879) 0.844 (0.817-0.871)
 Girl 95 0.829 (0.806-0.851)∗∗ 0.804 (0.782-0.827)∗∗ 0.903 (0.872-0.935)∗∗
Age group        
 10-11 66 (35) 1) 0.769 (0.752-0.786) 0.748 (0.732-0.765) 0.758 (0.739-0.777)
 12-13 59 (32)1) 0.835 (0.810-0.860) 0.813 (0.787-0.840) 0.832 (0.805-0.859)
 14-15 48 (20) 1) 0.918 (0.892-0.945) 0.887 (0.862-0.912) 0.978 (0.942-1.013)
 15- 26 (17)1) 0.988 (0.937-1.038)∗∗∗ 0.974 (0.920-1.027)∗∗∗ 1.061 (1.026-1.097)∗∗∗
Body mass index        
 Underweight 87 0.850 (0.829-0.870) 0.829 (0.808-0.851) 0.873 (0.851-0.895)
 Normal weight 89 0.886 (0.867-0.905)∗∗ 0.859 (0.839-0.878) 0.932 (0.912-0.952)∗∗∗
 Overweight 23 0.919 (0.881-0.957)∗∗ 0.911 (0.873-0.950)∗∗∗ 0.943 (0.903-0.982)∗∗
Mother’s BMD        
 Low 70 2) 0.851 (0.829-0.872) 0.830 (0.808-0.852) 0.879 (0.858-0.900)
 Middle 66 2) 0.875 (0.853-0.897) 0.853 (0.830-0.876) 0.899 (0.875-0.923)
 High 63 2) 0.904 (0.881-0.927)∗∗∗ 0.881 (0.858-0.904)∗∗∗ 0.958 (0.935-0.982)∗∗∗
Fracture        
 Yes 47 0.869 (0.828-0.910) 0.846 (0.805-0.886) 0.869 (0.824-0.914)
 No 150 0.848 (0.830-0.866) 0.826 (0.807-0.844) 0.875 (0.852-0.899)

Values are means and 95% confidence intervals

The obesity was divided into by body mass index: 18 and 23 kg/m2

The reference values of maternal BMD of total femur, femur neck and lumbar spine: 0.944 and 1.027, 0.878 and 0.965, and 1.148 and 1.271, respectively

1) The number of boys

2) The number of mothers according to the categories of total femur BMD

Significantly different from the reference group in each variavle at p <0.05

∗∗ p <0.01

∗∗∗ p<0.001

Table 2.
Daily nutrient intake of children and their mother
Nutrients Mean (95% confidence Interval)
Boy (n = 104) Girl (n = 95) Mother (n = 121)
Energy (kcal) 1,673 (1,576-1,770)∗∗ 1,440 (1,346-1,535) 1,460 (1,370-1,550)
Energy (% DRI) 74.0 (69.1-78.6) 77.0 (71.8-81.7) 72.1 (72.1-81.5)
Protein (g) 65.2 (59.6-70.9)∗∗ 53.5 (49.1-57.8) 57.7 (53.5-61.9)
Protein (% DRI) 180 (156.3-201.1) 151 (138.4-163.5) 128 (118.8-137.2)
Lipid (g) 52.0 (47.1-56.9) 47.0 (42.3-51.7) 41.7 (37.6-45.9)
Carbohydrates (g) 239.5 (225.6-253.3)∗∗ 204.8 (191.7-218.0) 212.4 (199.4-225.5)
Fiber (g) 13.5 (12.5-14.5) 11.7 (10.8-12.6) 17.1 (15.8-18.4)
Calcium (mg) 457.5 (403.0-511.9) 406.1 (354.6-457.5) 413.1 (372.6-453.6)
Calcium (% DRI) 62.0 (54.8-69.2) 58.2 (50.7-65.6) 63.4 (57.2-69.6)
Phosphorus (mg) 879.3 (810.2-948.3)∗∗ 748.9 (686.0-811.8) 808.0 (751.6-864.4)
Iron (mg) 11.8 (10.1-13.6) 10.1 (8.5-11.7) 11.1 (10.3-12.0)
Iron (% DRI) 118.1 (97.8-138.5) 102.5 (87.1-117.9) 82.0 (74.6-89.0)
Sodium (mg) 2,975 (2,774-3,176)∗∗ 2,515 (2,302-2,728) 3,313 (3,018-3,608)
Potassium (mg) 2,026 (1,851-2,200)∗∗ 1,707 (1,570-1,845) 2,179 (2,016-2,341)
Zinc (mg) 7.6 (7.0-8.2)∗∗ 6.4 (5.9-6.9) 6.8 (6.3-7.3)

Significantly different from girl group at

p < 0.05

∗∗ p < 0.01

Table 3.
Bone mineral density of total femur, femur neck and lumbar spine of children according to the frequencies of food intake after covariate adjustment 1)
Tertiles of each food group n Bone mineral density (g/cm 2)
Total femur Femur neck Lumbar spine
Rice        
1 78 0.877 (0.856-0.898) 0.853 (0.832-0.875) 0.903 (0.880-0.925)
2 55 0.880 (0.856-0.905) 0.862 (0.837-0.887) 0.917 (0.890-0.943)
3 66 0.872 (0.848-0.895) 0.848 (0.824-0.872) 0.913 (0.888-0.938)
Meat        
1 52 0.865 (0.840-0.890) 0.840 (0.814-0.866) 0.895 (0.868-0.922)
2 76 0.863 (0.842-0.884) 0.845 (0.824-0.866) 0.900 (0.878-0.922)
3 71 0.899 (0.877-0.921) 0.876 (0.853-0.898) 0.932 (0.909-0.955)
Vegetables        
1 47 0.848 (0.815-0.881) 0.826 (0.792-0.860) 0.883 (0.839-0.927)
2 65 0.852 (0.824-0.880) 0.832 (0.804-0.860) 0.874 (0.839-0.908)
3 87 0.856 (0.829-0.883) 0.832 (0.805-0.859) 0.866 (0.833-0.899)
Fast foods        
1 47 0.874 (0.847-0.902) 0.853 (0.825-0.881) 0.917 (0.887-0.946)
2 138 0.872 (0.856-0.888) 0.849 (0.833-0.866) 0.907 (0.890-0.924)
3 14 0.921 (0.873-0.970) 0.903 (0.854-0.953) 0.921 (0.869-0.973)
Cola        
1 150 0.872 (0.856-0.888) 0.852 (0.835-0.869) 0.908 (0.891-0.925)
2 32 0.875 (0.843-0.907) 0.851 (0.818-0.884) 0.897 (0.863-0.931)
3 17 0.912 (0.867-0.957) 0.882 (0.837-0.928) 0.949 (0.901-0.997)
Crackers        
1 68 0.875 (0.853-0.897) 0.853 (0.830-0.876) 0.909 (0.885-0.932)
2 57 0.876 (0.851-0.900) 0.853 (0.828-0.878) 0.911 (0.885-0.937)
3 74 0.878 (0.855-0.900) 0.856 (0.834-0.879) 0.911 (0.887-0.934)
Ramyun        
1 26 0.877 (0.840-0.914) 0.856 (0.819-0.893) 0.886 (0.848-0.925)
2 139 0.874 (0.857-0.891) 0.853 (0.836-0.870) 0.917 (0.900-0.935)
3 34 0.883 (0.852-0.915) 0.857 (0.825-0.889) 0.900 (0.867-0.933)
Seaweeds        
1 18 0.871 (0.828-0.914) 0.853 (0.809-0.897) 0.892 (0.846-0.938)
2 86 0.875 (0.854-0.896) 0.854 (0.833-0.875) 0.910 (0.888-0.932)
3 95 0.879 (0.859-0.898) 0.855 (0.835-0.874) 0.913 (0.893-0.934)
Fried foods        
1 57 0.874 (0.849-0.898) 0.853 (0.828-0.879) 0.908 (0.881-0.934)
2 106 0.874 (0.856-0.893) 0.854 (0.835-0.873) 0.904 (0.884-0.924)
3 36 0.885 (0.854-0.915) 0.857 (0.826-0.887) 0.928 (0.896-0.960)
Fruits        
1 58 0.857 (0.834-0.882) 0.829 (0.805-0.853) 0.899 (0.873-0.924)
2 82 0.881 (0.861-0.901) 0.864 (0.843-0.884) 0.911 (0.890-0.933)
3 59 0.889 (0.864-0.914) 0.867 (0.842-0.892) 0.920 (0.894-0.946)
Milk        
1 47 0.857 (0.831-0.884) 0.836 (0.809-0.863) 0.892 (0.864-0.920)
2 71 0.873 (0.850-0.895) 0.849 (0.826-0.872) 0.901 (0.878-0.925)
3 81 0.891 (0.871-0.912) 0.871 (0.850-0.892) 0.929 (0.907-0.951)
Exercise        
1 44 0.856 (0.828-0.883) 0.832 (0.804-0.860) 0.902 (0.873-0.931)
2 76 0.876 (0.855-0.897) 0.856 (0.834-0.877) 0.895 (0.873-0.917)
3 79 0.892 (0.869-0.916) 0.870 (0.846-0.893) 0.933 (0.909-0.958)

Values are means and 95% confidence intervals

1) Age, gender, mother age, body mass index and total calorie intake Reference value in each food group = 1

Significantly different from the reference group in each variavle at p < 0.05

Table 4.
Regression coefficient of bone mineral densities (BMD) of three area of children according to classification variables including mother’s BMD
Classification variables Total femur Femur neck Lumbar spine
Beta coefficients p-value Beta coefficients p-value Beta coefficients p-value
Intercept   0.740 0.000 0.695 0.000 0.939 0.000
Gender Boy 0.020 0.147 0.024 0.090 -0.095 0.000
  Girl 0.000 - 0.000 - 0.000 -
Age (years) 10-11 -0.197 0.000 -0.201 0.000 -0.297 0.000
  12-13 -0.135 0.000 -0.142 0.000 -0.232 0.000
  14-15 -0.057 0.034 -0.072 0.009 -0.104 0.000
  15- 0.000 - 0.000 - 0.000 -
Exercise None 0.000 - 0.000 - 0.000 -
  Moderate 0.027 0.109 0.034 0.030 0.018 0.336
  Frequently 0.040 0.031 0.042 0.018 0.039 0.031
Mother’s BMD Low 0.000 - 0.000 - 0.000 -
  Middle 0.036 0.018 0.032 0.024 0.032 0.033
  High 0.055 0.000 0.053 0.001 0.086 0.000

Reference value: gender = girl, age = 15 and over, exercise = none, mother’s BMD = Low, Milk intake = Low

TOOLS
Similar articles