1. Coderch L, López O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol. 2003. 4(2):107–129.
2. Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function. J Lipid Res. 2009. 50:S91–S96.
3. Bibel DJ, Aly R, Shinefield HR. Antimicrobial activity of sphingosines. J Invest Dermatol. 1992. 98(3):269–273.
4. Vogler R, Sauer B, Kim DS, Schäfer-Korting M, Kleuser B. Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing. J Invest Dermatol. 2003. 120(4):693–700.
5. Elias PM, Wood LC, Feingold KR. Epidermal pathogenesis of inflammatory dermatoses. Am J Contact Dermat. 1999. 10(3):119–126.
6. Horn EJ, Domm S, Katz HI, Lebwohl M, Mrowietz U, Kragballe K. International Psoriasis Council. Topical corticosteroids in psoriasis: strategies for improving safety. J Eur Acad Dermatol Venereol. 2010. 24(2):119–124.
7. Majoie IM, Oldhoff JM, van Weelden H, Laaper-Ertmann M, Bousema MT, Sigurdsson V, Knol EF, Bruijnzeel-Koomen CA, de Bruin-Weller MS. Narrowband ultraviolet B and medium-dose ultraviolet A1 are equally effective in the treatment of moderate to severe atopic dermatitis. J Am Acad Dermatol. 2009. 60(1):77–84.
8. Warren RB, Griffiths CE. Systemic therapies for psoriasis: methotrexate, retinoids, and cyclosporine. Clin Dermatol. 2008. 26(5):438–447.
9. Kim J, Kim H, Jeong do H, Kim SH, Park SK, Cho Y. Comparative effect of gromwell (Lithospermum erythrorhizon) extract and borage oil on reversing epidermal hyperproliferation in guinea pigs. Biosci Biotechnol Biochem. 2006. 70(9):2086–2095.
10. Lee KG, Yeo JH, Lee YW, Kweon HY, Kim JH. Bioactive and skin-compatible properties of silk sericin. Korean J Sericult Sci. 2001. 43(2):109–115.
11. Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR. Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol. 2005. 4(4):250–257.
12. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem. 1998. 62(1):145–147.
13. Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N. Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumorigenesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF-alpha. Oncol Rep. 2003. 10(3):537–543.
14. Nagai N, Murao T, Ito Y, Okamoto N, Sasaki M. Enhancing effects of sericin on corneal wound healing in rat debrided corneal epithelium. Biol Pharm Bull. 2009. 32(5):933–936.
15. Choi MJ, Maibach HI. Role of ceramides in barrier function of healthy and diseased skin. Am J Clin Dermatol. 2005. 6(4):215–223.
16. Farwanah H, Raith K, Neubert RH, Wohlrab J. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch Dermatol Res. 2005. 296(11):514–521.
17. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Invest Dermatol. 1991. 96(4):523–526.
18. Meguro S, Arai Y, Masukawa Y, Uie K, Tokimitsu I. Relationship between covalently bound ceramides and transepidermal water loss (TEWL). Arch Dermatol Res. 2000. 292(9):463–468.
19. Motta S, Monti M, Sesana S, Caputo R, Carelli S, Ghidoni R. Ceramide composition of the psoriatic scale. Biochim Biophys Acta. 1993. 1182(2):147–151.
20. Reiter LV, Torres SM, Wertz PW. Characterization and quantification of ceramides in the nonlesional skin of canine patients with atopic dermatitis compared with controls. Vet Dermatol. 2009. 20(4):260–266.
21. Madyarov S, Lee KG, Yeo JH, Nam J, Lee YW. Improved method for the preparation of silk fibroin hydrolysates. Korean J Sericult Sci. 1999. 41(2):108–115.
22. Suto H, Matsuda H, Mitsuishi K, Hira K, Uchida T, Unno T, Ogawa H, Ra C. NC/Nga mice: a mouse model for atopic dermatitis. Int Arch Allergy Immunol. 1999. 120:Suppl 1. 70–75.
23. Takagi Y, Nakagawa H, Yaginuma T, Takema Y, Imokawa G. An accumulation of glucosylceramide in the stratum corneum due to attenuated activity of beta-glucocerebrosidase is associated with the early phase of UVB-induced alteration in cutaneous barrier function. Arch Dermatol Res. 2005. 297(1):18–25.
24. Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K. Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem. 1999. 274(16):11038–11045.
25. Min JK, Yoo HS, Lee EY, Lee WJ, Lee YM. Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase. Anal Biochem. 2002. 303(2):167–175.
26. Flamand N, Justine P, Bernaud F, Rougier A, Gaetani Q. In vivo distribution of free long-chain sphingoid bases in the human stratum corneum by high-performance liquid chromatographic analysis of strippings. J Chromatogr B Biomed Appl. 1994. 656(1):65–71.
27. Caligan TB, Peters K, Ou J, Wang E, Saba J, Merrill AH Jr. A high-performance liquid chromatographic method to measure sphingosine 1-phosphate and related compounds from sphingosine kinase assays and other biological samples. Anal Biochem. 2000. 281(1):36–44.
28. Park KH, Choi YS, Kim HA, Lee KG, Yeo JH, Jung DH, Kim SH, Cho YH. Dietary effect of silk protein on ceramide synthesis and the expression of ceramide metabolic enzymes in the epidermis of NC/Nga mice. J Korean Soc Food Sci Nutr. 2007. 36(5):554–562.
29. Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol. 2002. 119(1):166–173.
30. Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Ichikawa Y, Imokawa G. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002. 119(2):433–439.
31. Elias PM, Menon GK. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res. 1991. 24:1–26.
32. Melnik B. Disturbances of antimicrobial lipids in atopic dermatitis. J Dtsch Dermatol Ges. 2006. 4(2):114–123.
33. Bibel DJ, Aly R, Shinefield HR. Inhibition of microbial adherence by sphinganine. Can J Microbiol. 1992. 38(9):983–985.
34. Loiseau N, Moradian S, Elias PM, Holleran WM, Uchida Y. Ceramide metabolites in epidermal permeability barrier function and atopic dermatitis [abstract]. J Invest Dermatol. 2009. 129:Suppl 1. S68. Abstract no.405.
35. Stewart ME, Downing DT. Free sphingosines of human skin include 6-hydroxysphingosine and unusually long-chain dihydrosphingosines. J Invest Dermatol. 1995. 105(4):613–618.
36. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S. Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta. 2006. 1758(12):2016–2026.
37. Gómez-Muñoz A. Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim Biophys Acta. 2006. 1758(12):2049–2056.
38. Prieschl EE, Csonga R, Novotny V, Kikuchi GE, Baumruker T. The balance between sphingosine and sphingosine-1-phosphate is decisive for mast cell activation after Fc epsilon receptor I triggering. J Exp Med. 1999. 190(1):1–8.
39. Mondal M, Trivedy K, Nirmal Kumar S. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., -a review. Casp J Environ Sci. 2007. 5(2):63–76.
40. Voegeli R, Meier J, Blust R. Sericin silk protein: unique structure and properties. Cosmet Toilet. 1993. 108:101–108.
41. Aramwit P, Sangcakul A. The effects of sericin cream on wound healing in rats. Biosci Biotechnol Biochem. 2007. 71(10):2473–2477.