Journal List > Korean J Nutr > v.43(3) > 1043826

Cho: Vitamin B6 Requirement: Indicators and Factors Affecting∗

Abstract

The purpose of this study was to establish the selection of indicators for estimating and factors affecting the requirement of vitamin B6. There has been a need to establish the human requirements of vitamin B6 since vitamin B6 is thought to be involved in more than one hundred biochemical reactions as a coenzyme in the metabolism of amino acids, glucose, and lipid, and the synthesis of neurotransmitters. For the review of the literature, this study included from early findings of the sixties to studies of 2009. This study suggests that plasma pyridoxal 5’ phosphate (PLP) is the best single indicator of vitamin B6 status for the healthy but not for the non-healthy. Erythrocyte aspartate aminotransferase and alanine aminotransferase activation by PLP as an indirect measure and urinary 4-pyridoxic acid excretion as a direct measure are useful as supporting indicators. Bioavailability, nutrient interaction, physiological need, and chronic diseases may increase the requirement for vitamin B6. However, these effects can not be quantified due to insufficient evidences.

REFERENCES

1). Rybak ME, Jain RB, Pfeiffer CM. Clinical vitamin B6 analysis: an interlaboratory comparison of pyridoxal 5’-phosphate measurement in serum. Clin Chem. 2005; 51:1223–1231.
2). Lumeng L, Li TK. Vitamin B6 metabolism in chronic alcohol abuse. Pyridoxal phosphate levels in plasma and the effects of acetaldehyde on pyridoxal phosphate synthesis and degradation in human erythrocytes. J Clin Invest. 1974; 53:693–704.
3). Lumeng L, Ryan MP, Li TK. Validation of diagnostic value of plasma pyridoxal phosphate measurements in vitamin B6 nutrition of the rats. J Nutr. 1978; 108:545–553.
4). Lui A, Lumeng L, Aronoff GR, Li TK. Relationship between body store of vitamin B6 and plasma pyridoxal-P clearance: Metabolic balance studies in humans. J Lab Clin Med. 1985; 106:491–497.
5). Bor MV, Refsum H, Bisp MR, Bleie O, Schneede J, Nordrehaug JE, Ueland PM, Nygard OK, Nexo E. Plasma vitamin B6 vitamers before and after oral vitamin B6 treatment: a randomized placebo-controlled study. Clin Chem. 2003; 49:155–161.
6). Leklem JE. Vitamin B6: A status report. J Nutr. 1990; 120:1503–15087.
7). Cho Y, Kim B. Evaluation of vitamin B6 status and RDA in young Koreans. Ann Nutr Met. 2004; 48:235–240.
crossref
8). Lim MY, Nam YS, Kim SS, Chang NS. Vitamin B stalus and scrum homocysteinc levels in infertile woman. Korean J Nutr. 2004; 37:115–122.
9). Lin PT, Cheng CH, Liaw YP, Lee BJ, Lee TW, Huang YC. Low pyridoxal 5’-phosphate is associated with increased risk of coronary artery disease. Nutrition. 2006; 22:1146–1151.
crossref
10). Chang SJ, Hsiao LJ, Lee YC, Hsuen SY. Vitamin B6 status assessment in relation to dietary intake in high school student aged 16-18 years. Br J Nutr. 2007; 97:764–769.
11). Huang YC, Chang HH, Huang SC, Cheng CH, Lee BJ, Cheng SY, Su KH. Plasma pyridoxal 5’-phosphate is a significant indicator of immune responses in the mechanically ventilated critically ill. Nutrition. 2005; 21:779–785.
crossref
12). Chiang EP, Bagley PJ, Roubenoff R, Nadeau M, Selhub J. Plasma pyridoxal 5’-phosphate concentration is correlated with functional vitamin B6 indices in patients with rheumatoid arthritis and marginal vitamin B6 status. J Nutr. 2003; 133:1056–1059.
13). Chabner B, Livington DA. A simple enzymic assay for pyridoxal phosphate. Anal Biochem. 1970; 34:413–423.
crossref
14). Han Q, Xu M, Tang L, Tan X, Tan X, Tan Y. Homogeneous nonradioactive, enzymatic assay for plasma pyridoxal 5’-phosphate. Clin Chem. 2002; 48:1560–1564.
crossref
15). Bisp MR. Bor MV, Heinsvig EM, Kall MA. Nexo E. Determination of vitamin B6 vitamers and pyridoxic acid in plasma: development and evaluation of a high performance liquid chromatographic assay. Anal Biochem. 2002; 305:82–89.
16). Rybak ME, Pfeiffer CM. Clinical analysis of vitamin B6: determination of pyridoxal 5’-phosphate and 4-pyridoxic acid in human serum by reversed-phase high performance liquid chromatography with chlorite postcolumn derivatization. Anal Biochem. 2004; 333:336–344.
17). Bates CJ, Pentieva KD, Matthew N, Macdonald A. A simple, sensitive and reproducible assay for pyridoxal 5’-phosphate and 4-pyridoxic acid in human plasma. Clin Chimica Acta. 1999; 280:101–111.
crossref
18). Brown RP, Rose DP, Leklem JE, Linkswiler H, Anand R. Urinary 4-pyridoxic acid, plasma pyridoxal phosphate, and erythrocyte aminotransferase levels in oral contraceptive users receiving controlled intakes of vitamin B6. Am J Clin Nutr. 1975; 28:10–19.
19). Kretsch MJ, Sauberlich HE, Skala JH, Johnson HL. Vitamin B6 requirement and status assessment: young women fed a depletion diet followed by a plant or animal-protein diet with graded amounts of vitamin B6. Am J Clin Nutr. 1995; 61:1091–1101.
20). Hansen CM, Leklem JE, Miller LT. Changes in vitamin B6 status indicators of women fed a constant protein diet with varying levels of vitamin B6. Am J Clin Nutr. 1997; 66:1379–1387.
21). Rose RC, McCormick DB, Li TK, Lumeng L, Haddad JG Jr. Spector R. Transport and metabolism of vitamins. Fed Proc. 1986; 45:30–39.
22). Brown RR. The tryptophan load test as an index of vitamin B6 nutrition. Leklem JE, Reynolds RD, editors. Methods in vitamin B6 nutrition. New York: Plenum Press;1981. p. 321–340.
23). Brown RR. Possible role for vitamin B6 metabolism in cancer prevention and treatment. Leklem JE, Reynolds RE, editors. Clinical and physiological application of vitamin B6. New York: Liss;1988. p. 279–301.
24). Linkswiler HM. Methionine metabolism excretion as affected by a vitamin B6 deficiency. Leklem JE, Reynolds JE, editors. Methods in vitamin B6 nutrition. New York: Plenum Press;1981. p. 373–381.
25). Leklem JE. Bioavailability of vitamins; application of human nutrition. Dobernz AR, Milner JA, Schweigert BS, editors. Foods and agricultural research opportunities to improve human nutrition. Newark: University of Delaware;1986. p. A56–A73.
26). Tarr JB, Tamura T, Stokstad EL. Availability of vitamin B6 and pantothenate in an average American diet in man. Am J Clin Nutr. 1981; 34:1328–1337.
27). Gregory JF. Bioavailability of vitamin B6. Eur J Clin Nutr. 1997; 51:S43–S48.
28). Shane B. Vitamin B6 and blood. Human Vitamin B6 requirements: Proceedings of a workshop. Washington, DC: National Academy Press;1978. p. 111–128.
30). Waldmann A, Do B, Koschizke JW, Leitzmann C, Hahn A. Dietary intake of vitamin B6 and concentration of vitamin B6 in blood samples of German vegan. Pub Health Nutr. 2006; 9:779–784.
31). Huang YC, Chen W, Evans MC, Mitchell ME, Shultz TD. Vitamin B6 requirement and status assessment of young women fed a high protein diet with various levels of vitamin B6. Am J Clin Nutr. 1998; 67:208–20.
32). Ribaya-Mercado JD, Russell RM, Sahyoun N, Marrow FD, Gershoff SN. Vitamin B6 Requirements of elderly men and women. J Nutr. 1991; 121:1062–1074.
33). Miller LT, Leklem JE, Shultz TD. The Effect of protein on the metabolism of vitamin B6 in humans. J Nutr. 1985; 115:1663–1672.
34). Morris MS, Picciano MF, Jacques PF, Selhub J. Plasma pyridoxal 5’-phosphate in the US population: the National Health and Nutrition Examination Survey, 2003-2004. Am J Clin Nutr. 2008; 87:1446–1454.
crossref
35). Pennemans DL, van den Berg H, Westerterp KR. The influence of protein intake on vitamin B6 metabolism differs in young and elderly humans. J Nutr. 1994; 124:1207–1214.
36). Hofmann A, Reynolds RD, Somoak BL, Villanueva VG, Deuster PA. Plasma pyridoxal and pyridoxal 5’-phosphate concentration in response to ingestion of water or glucose polymer during a 2-h run. Am J Clin Nutr. 1991; 53:84–89.
37). Ferroli CE, Trumbo PR. Bioavailability of vitamin B6 in young and older man. Am J Clin Nutr. 1994; 60:68–71.
38). Rose CS, Gyorgy P, Butler M. Age differences in vitamin B6 status of 617 men. Am J Clin Nutr. 1976; 29:847–853.
39). Lee CM, Leklem JE. Differences in vitamin B6 status indicator response between young and middle aged women fed constant diets with levels of vitamin B6. Am J Clin Nutr. 1985; 42:226–234.
40). Selhub J, Jacques PF, Wilson PWF, Rush D, Rosenberg IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA. 1993; 270:2693–2698.
crossref
41). Shane B, Contractor SF. Vitamin B6 status and metabolism in pregnancy. Tryfiates GP, editor. Vitamin B6 metabolism and role in growth. Westport: Food & Nutrition Press;1980. p. 131–171.
42). Contractor SF, Shane B. Blood and urine levels of vitamin B6 in the mother and fetus before and after loading of the mother with vitamin B6. Am J Obstet Gynecol. 1970; 107:635–640.
43). Contractor SF, Shane B. Metabolism of 14C pyridoxal in pregnant rat. Biochim Biophys Acta. 1971; 230:127–136.
44). Kim HS, Kim YJ, Chang NS. Effects of matcrnal 5,10 methy-lenetetrahydrofolate reductase (MTHFB) genotype, serom ho-moeysteine and B vitamin levels on postnatal growth in their offsprings. Korean J Nutr. 2006; 39:264–273.
45). Shane B, Contractor SF. Assessment of vitamin B6 status: Studies on pregnant women and oral contraceptive agent users. Am J Clin Nutr. 1975; 28:739–747.
46). Ahn HS, Lee GJ, Chang HY. Maternal vitamin B6 intake and vitamin B6 level in matornal, umbilical cord plasma and placenla. Korean J Nutr. 2002; 35:322–331.
47). Kang SA. Vitamin B6 status of mothers: Relation to condition of newborn and the neonate. Korean J Nutr. 1993; 26:867–886.
48). Gaynor R, Dempsey WB. Vitamin B6 enzymes in normal and pre-eclamptic human placentae. Clin Chim Acta. 1972; 37:411–416.
49). Kang-Yoon SA, Kirksey A, Giacoia G, West K. Vitamin B6 status of breast-fed neonates: influence of pyridoxine supplementation on mothers and neonates. Am J Clin Nutr. 1992; 56:548–558.
50). Chang SJ, Kirksey A. Vitamin B6 status of breast-fed infants in relation to pyridoxine HCl supplementation of mothers. J Nutr Sci Vitaminol. 2002; 48:10–17.
51). Chun YM, Kim YJ, Chang NS. Effects of maternal dictary intakes and health related behaviors on vitamin B concentrations in human milk. Korean J Nutr. 2005; 38:313–319.
52). Crozier PG, Cordain L, Dampson DA. Exercise-induced changes in plasma vitamin B6 concentrations do not vary with exercise intensity. Am J Clin Nutr. 1994; 60:552–558.
53). Leklem JE, Shultz TD. Increased plasma pyridoxal 5’-phosphate and vitamin B6 in male adolescents after 4500-meter run. Am J Clin Nutr. 1983; 38:541–548.
54). Leonard SW, Leklem JE. Plasma B6 vitamer changes following a 50-km ultra-marathon. Int J Sport Nutr Exer Metab. 2000; 10:302–314.
55). Manore MM, Leklem JE, Walter MG. Vitamin B6 metabolism as affected by exercise in trained and untrained women fed diets differing in carbohydrate and vitamin B6 content. Am J Clin Nutr. 1987; 46:995–1004.
56). Choi E, Cho Y. Vitamin B6 deficiency can reduce fuel storage and utilization in physically trained rats. Int J Vit Nutr Res. 2008; 78:64–69.
57). Choi E, Cho Y. Effect of vitamin B6 deficiency on antioxidative status in rats with exercised-induced oxidative stress. Nutr Res Pract. 2009; 3:208–211.
58). van der Beek EJ, van Dokkum W, Wedel M, Schrijver J, van der Berg H. Thiamin, riboflavin and vitamin B6: Impact of restricted intake on physical performance in man. J Am Coll Nutr. 1994; 13:629–640.
59). Spence JD. Patients with atherosclerotic vascular disease: how low should plasma homocysteine levels go? Am J Cardiovasc Drugs. 2001; 1:85–86.
60). Robinson K, Arheart K, Refsum H, Brattstrom L, Boers G, Ueland P, Rubba P, Palma-Reis R, Meleady R, Daly L, Witteman J. Low circulating folate and vitamin B6 concentrations: risk factors for stroke, peripheral vascular disease, and coronary artery disease. European COMAC Group. Circulation. 1998; 97:437–446.
61). Folsom AR, Desvarieux M, Nieto FJ, Boland LL, Ballantyne CM, Chambless LE. B vitamin status and inflammatory markers. Atherosclerosis. 2003; 169:169–174.
crossref
62). Rimm EB, Willet WC, Hu FB, Sampson L, Colditz GA, Manson JE, Hennekens C, Stampfer MJ. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA. 1998; 279:359–364.
crossref
63). He K, Merchant A, Rimm EB, Rosner BA, Stampfer MJ, Willett WC, Ascherio A. Folate, vitamin B6, and B12 intakes in relation to risk of stroke among men. Stroke. 2004; 35:169–174.
64). Kelly PJ, Shih V, Kristler JP, Barron M, Lee H, Mandell R, Furie KL. Low vitamin B6, but not homocysteine, is associated with increased risk of stroke and transient ichemic attack in the era of folic acid grain fortification. Stroke. 2003; 34:e51–e54.
crossref
65). Page JH, Ma J, Chiuve SE, Stampfer MJ, Selhub J, Manson JE, Rimm EB. Plasma vitamin B6 and risk of myocardial infarction in women. Circulation. 2009; 120:649–655.
66). Friso S, Jacques PF, Wilson PWF, Rosengerg IH, Selhub J. Low circulating vitamin B6 is associated with elevation of the inflammation marker C-ractive protein independently of plasma homocysteine levels. Circulation. 2001; 103:2788–2791.
67). Friso S, Girelli D, Martinelli N, Olivieri O, Lotto V, Bozzini C. Low plasma vitamin B6 concentrations and modulation of coronary artery disease risk. Am J Clin Nutr. 2004; 79:992–998.
68). Kelly PJ, Kristler JP, Shih V, Mandell R, Atassi N, Barron M, Lee H, Silveira S, Furie KL. Inflammation, homocysteine, and vitamin B6 status after ischemic stroke. Stroke. 2004; 35:12–15.
69). Paukionis L, Kane SL. Meckling KA. Vitamin status and cognitive function in a long-term care population. BMC Geriatr. 2005; 5:16.
70). Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer’s disease? J Alzheimer Dis. 2006; 9:393–398.
crossref
71). Miller JW. Green R, Mungas DM, Reed BR, Jagust WJ, Homocysteine, vitamin B6, and vascular disease in AD patients. Neurology. 2002; 58:1471–1475.
72). Fassbender K, Mielke O, Bertsch T, Nafe B, Froschen S, Hen-nerici M. Homocysteine in cerebral macroangiography and mic-roangiography. Lancet. 1999; 353:1586–1587.
73). Mulder C, Scheltens P, Barkhof F, Gundy C, Verstraeten RA, de Leeuw FE. Low vitamin B6 levels are associated with white matter lesions in Alzheimer’s disease. J Am Geriatr Soc. 2005; 53:1073–1074.
74). Wilson RG, Davis RE. Serum pyridoxal concentrations in children with diabetes mellitus. Pathology. 1977; 9:95–98.
crossref
75). Davis RE, Calder JS, Curnow DH. serum pyridoxal and folate concentrations in diabetics. Pathology. 1976; 8:151–156.
crossref
76). Okada M, Shibuya M, Yamamoto E, Murakami Y. Effects of diabetes on vitamin B6 requirement in experimental animals. Diabetes Obes Metab. 1999; 1:221–225.
77). Constans J, Blann AD, Resplandy F, Parrot F, Renard M, Seigneur M, Guérin V, Boisseau M, Conri C. Three months supplementation of hyperhomocysteinaemic patients with folic acid and vitamin B6 improves biological markers of endothelial dysfunction. Br J Haematol. 1999; 107:776–778.
78). Mackenzie KE, Wiltshire EJ, Gent R, Hirte C, Piotto L, Couper JJ. Folate and vitamin B6 rapidly normalize endothelial dysfunction in children with type 1 diabetes mellitus. Pediatrics. 2006; 118:242–253.
79). Cigolini M, Lagulli MP, Miconi V, Lorenzi T, Lombardi S, Targher G. Inflammatory variables may mediate the link between low plasma vitamin B6 concentrations and cardiovascular disease in type 2 diabetes. Nutr Metabol Cardiovas Dis. 2006; 16:e9–e10.
80). Gorson KC, Ropper AH. Additional causes for distal sensory polyneuropathy in diabetic patients. J Neurol Neurosurg Psychiatry. 2006; 77:354–358.
crossref
81). Roubenoff R, Roubenoff RA, Selhub J, Nadeau MR, Cannon JG, Freeman LM, Dinarello CA, Rosenberg IH. Abnormal vitamin B6 status in rheumatoid cachexia. Association with spontaneous tumor necrosis factor alpha production and markers of inflammation. Arthritis Rheum. 1995; 38:105–109.
82). Chiang EP, Bagley PJ, Selhub J, Nadeau M, Roubenoff R. Abnormal vitamin B6 status is associated with severity of symptoms in patients with rheumatoid arthritis. Am J Med. 2003; 114:283–287.
83). Chiang EP, Smith DE, Selhub J, Dallal G, Wang YC, Roubenoff R. Inflammation causes tissue-specific depletion of vitamin B6. Arthritis Res Ther. 2005; 7:R1254–R1262.
84). Chiang EP, Selhub J, Bagley PJ, Dallal G, Roubenoff R. Pyridoxine supplementation corrects vitamin B6 deficiency but does not improve inflammation in patients with rheumatoid arthritis. Arthritis Res Ther. 2005; 7:R1404–R1411.
85). Rose DP. Oral contraceptives and vitamin B6. Proceedings of a workshop on Human Vitamin B6 Requirement. Washington D.C: National Academy Press. 1978. 193–201.
86). Bermond P. Therapy of side effects of oral contraceptive agents with vitamin B6. Acta Vitaminol Enzymol. 1982; 4:45–54.
87). Luhby AL, Brin M, Gordon M, Davis P, Murphy M, Spiegel H. Vitamin B6 metabolism in users of oral contraceptive agents. I. Abnormal urinary xanthurenic acid excretion and its correction by pyridoxine. Am J Clin Nutr. 1971; 24:684–693.
88). Aly HE, Donald EA, Simpson MH. Oral contraceptives and vitamin B6 metabolism. Am J Clin Nutr. 1971; 24:297–303.
89). Nutrition Review. The vitamin B6 requirement in oral contraceptive users. Nutr Rev. 1979; 37:344–345.
90). Bender DA. Effects of oestradiol and vitamin B6 on tryptophan metabolism in rats: implications for the interpretation of the tryptophan load test for vitamin B6 nutritional status. Br J Nutr. 1983; 50:33–42.
91). Leklem JE. Vitamin B6 requirement and oral contraceptive use-a concern? J Nutr. 1986; 116:475–477.
92). Lumeng L, Cleary RE, Li TK. Effect of oral contraceptives on the plasma concentration of pyridoxal phosphate. Am J Clin Nutr. 1974; 27:326–333.
crossref
93). Masse PG, Van den Berg H, Duguay C, Beaulieu G, Simard JM. Early effect of a low dose (30 micrograms) ethinyl estradiol-containing Triphasil on vitamin B6 status. A follow-up study on six menstrual cycles. Int J Vit Nutr Res. 1996; 66:46–54.
94). Lussana F, Zighetti ML, Bucciarelli P, Cugno M, Cattaneo M. Blood levels of homocysteine, folate, vitamin B6 and vitamin B12 in women using oral contraceptives compared to non-users. Thromb Res. 2003; 112:37–41.
95). Vermaak WJ, Ubbink JB, Barnard HC, Potgieter GM, van Jaarsveld H, Groenewald AJ. Vitamin B6 nutrition status and cigarette smoking. Am J Clin Nutr. 1990; 51:1058–1061.
TOOLS
Similar articles