Abstract
Purpose:
The aim of this study was to evaluate the usefulness of thyroid function screening in preterm infants and the relation between thyroid hormone level, perinatal environment, and clinical presentation after preterm birth.
Methods:
We retrospectively evaluated 46 preterm infants from March 2013 to December 2014, who had been screened for congenital hypothyroidism during the 1st week with thyroid stimulating hormone (TSH), triiodothyronine (T3) and free thyroxine (fT4) measured by the radioimmunoassay method. The effects of pregnancy associated maternal factors, gestational age, growth parameters, Apgar score, 1st meconium passage time, respiratory distress syndrome and apnea on thyroid hormone levels were assessed by Mann-Whitney U-test and multiple linear regression analysis.
Results:
With advancing gestational age, T3 and fT4 displayed a tendency to increase. FT4 showed a positive correlation pattern with antenatal steroid therapy, corrected gestational age at examination and a negative correlation pattern with 1st meconium passage time and apnea (P<0.05). TSH displayed a positive correlation pattern with 1st meconium passage time, 5-minute Apgar score and a negative correlation pattern with sampling age (P<0.05).
REFERENCES
1). Forhead AJ., Fowden A.L. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol. 2014. 221:R87–103.
2). Balazs R., Kovacs S., Cocks WA., Johnson AL., Eayrs JT. Effect of thyroid hormone on the biochemical maturation of rat brain: postnatal cell formation. Brain Res. 1971. 25:555–70.
3). Nunez J. Effects of thyroid hormones during brain differentiation. Mol Cell Endocrinol. 1984. 37:125–32.
4). Scratch SE., Hunt RW., Thompson DK., Ahmadzai ZM., Doyle LW., Inder TE, et al. Free thyroxine levels after very preterm birth and neurodevelopmental outcomes at age 7 years. Pediatrics. 2014. 133:e955–63.
5). Zoeller RT., Rovet J. Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol. 2004. 16:809–18.
6). Fisher DA. Thyroid system immaturities in very low birth weight premature infants. Semin Perinatol. 2008. 32:387–97.
7). Reuss ML., Paneth N., Lorenz JM., Susser M. Correlates of low thyroxine values at newborn screening among infants born before 32 weeks gestation. Early Human Development. 1997. 47:223–33.
8). Leviton A., Paneth N., Reuss ML., Susser M., Allred EN., Dammann O, et al. Hypothyroxinemia of prematurity and the risk of cerebral white matter damage. J Pediatr. 1999. 134:706–11.
9). Shepard TH. Onset of function in the human fetal thyroid: biochemical and radioautographic studies from organ culture. J Clin Endocrinol Metab. 1967. 27:945–58.
10). Contempre B., Jauniaux E., Calvo R., Jurkovic D., Campbell S., de Escobar GM. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J Clin Endocrinol Metab. 1993. 77:1719–22.
11). Morreale de Escobar G., Obregon MJ., Escobar del Rey F. Role of thyroid hormone during early brain development. Eur J Endocrinol. 2004. 151(Suppl 3):U25–37.
12). Burrow GN., Fisher DA., Larsen PR. Maternal and fetal thyroid function. N Engl J Med. 1994. 331:1072–8.
13). Fisher DA., Dussault JH., Sack J., Chopra IJ. Ontogenesis of hypothalamic—pituitary—thyroid function and metabolism in man, sheep, and rat. Recent Prog Horm Res. 1976. 33:59–116.
14). Fisher DA., Polk DH., Wu SY. Fetal thyroid metabolism: a pluralistic system. Thyroid. 1994. 4:367–71.
15). Fisher DA., Nelson JC., Carlton EI., Wilcox RB. Maturation of human hypothalamic-pituitary-thyroid function and control. Thyroid. 2000. 10:229–34.
16). Fisher DA., Klein AH. Thyroid development and disorders of thyroid function in the newborn. N Engl J Med. 1981. 304:702–12.
17). Kim SY., Han MY., Lee KH. Thyroid function in preterm infants with respiratory distress syndrome and bronchopulmonary dysplasia. J Korean Soc Neonatol. 2001. 8:94–102.
18). La Gamma EF. Transient hypothyroxinemia of prematurity. Introduction. Semin Perinatol. 2008. 32:377–9.
19). Kohler B., Schnabel D., Biebermann H., Gruters A. Transient congenital hypothyroidism and hyperthyrotropinemia: normal thyroid function and physical development at the ages of 6-14 years. J Clin Endocrinol Metab. 1996. 81:1563–7.
20). Paneth N. Does transient hypothyroxinemia cause abnormal neurodevelopment in premature infants? Clin Perinatol. 1998. 25:627–43.
21). Reuss ML., Paneth N., Pinto-Martin JA., Lorenz JM., Susser M. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N Engl J Med. 1996. 334:821–7.
22). Wrutniak C., Cabello G. Changes in the concentration of thyroxine in the plasma of rat fetuses during late gestation: influence of ligation of the maternal uterine vein and artery. J Endocrinol. 1983. 99:233–8.
23). Fowden AL., Silver M. The effects of thyroid hormones on oxygen and glucose metabolism in the sheep fetus during late gestation. J Physiol. 1995. 482:203–13.
24). Forhead AJ., Cutts S., Matthews PA., Fowden AL. Role of thyroid hormones in the developmental control of tissue glycogen in fetal sheep near term. Exp Physiol. 2009. 94:1079–87.
25). Barker PM., Strang LB., Walters DV. The role of thyroid hormones in maturation of the adrenaline-sensitive lung liquid reabsorptive mechanism in fetal sheep. J Physiol. 1990. 424:473–85.
26). Mendelson CR., Boggaram V. Hormonal control of the surfactant system in fetal lung. Annu Rev Physiol. 1991. 53:415–40.
27). Forhead AJ., Fowden AL. Effects of thyroid hormones on pulmonary and renal angiotensin-converting enzyme concentrations in fetal sheep near term. J Endocrinol. 2002. 173:143–50.
28). Chattergoon NN., Giraud GD., Louey S., Stork P., Fowden AL., Thornburg KL. Thyroid hormone drives fetal cardiomyo-cyte maturation. FASEB J. 2012. 26:397–408.
29). Segar JL., Volk KA., Lipman MH., Scholz TD. Thyroid hormone is required for growth adaptation to pressure load in the ovine fetal heart. Exp Physiol. 2013. 98:722–33.
30). Yaylali O., Kirac S., Yilmaz M., Akin F., Yuksel D., Demirkan N, et al. Does hypothyroidism affect gastrointestinal motility? Gastroenterol Res Pract. 2009. 2009:529802.
31). Patil AD. Link between hypothyroidism and small intestinal bacterial overgrowth. Indian J Endocrinol Metab. 2014. 18:307–9.
32). National Newborn Screening Information system, National Newborn Screening and Genetics Resource Center (NNSGRC). http://genes-r-us.uthscsa.edu.
33). Mandel SJ HR., Larson CA., Prigozhin AB., Rojas DA., Mitchell ML. Atypical hypothyroidism and the very low birthweight infant. Thyroid. 2000. 10:693–5.
Table 1.
Variables | Number (%) | fT4 (ng/dL) P-value |
---|---|---|
GA | ||
<32 weeks | 6 (13.0%) | 0.90±0.26 0.000† |
≥32 weeks | 40 (87.0%) | 1.47±0.19 |
Gender | ||
Male | 22 (47.8%) | 1.38±0.27 0.605 |
Female | 24 (52.2%) | 1.41±0.27 |
Mode of delivery | ||
Vaginal | 18 (39.1%) | 1.38±0.28 0.839 |
Caesarean section | 28 (60.9%) | 1.41±0.28 |
Antenatal steroid therapy | ||
Yes | 7 (15.2%) | 1.25±0.20 0.039∗ |
No | 39 (84.8%) | 1.42±0.28 |
GDM | ||
Yes | 4 (8.7%) | 1.49±0.13 0.507 |
No | 42 (91.3%) | 1.39±0.29 |
PROM | ||
<24 hours | 33 (71.7%) | 1.40±0.20 0.788 |
≥24 hours | 13 (28.3%) | 1.39±0.30 |
U. urealyticum culture | ||
Positive | 5 (10.9%) | 1.41±0.18 0.986 |
Negative | 41 (89.1%) | 1.39±0.29 |
O2 therapy right after birth | ||
Yes | 36 (78.3%) | 1.37±0.30 0.101 |
No | 10 (21.7%) | 1.51±0.13 |
RDS | ||
Yes | 6 (13.0%) | 1.00±0.33 0.001† |
No | 40 (87.0%) | 1.46±0.21 |
Apnea | ||
Yes | 9 (19.6%) | 1.05±0.33 0.000† |
No | 37 (80.4%) | 1.48±0.19 |
1st meconium passage | ||
<24 hours | 41 (89.1%) | 1.44±0.23 0.019∗ |
≥24 hours | 5 (10.9%) | 1.05±0.40 |