1. Bevilacqua V, Dimauro G, Marino F, Brunetti A, Cassano F, Di Maio A, et al. A novel approach to evaluate blood parameters using computer vision techniques. In : Proceedings of In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA); 2016 May 15–18; Benevento, Italy. p. 1–6.
https://doi.org/10.1109/MeMeA.2016.7533760.

2. Delgado-Rivera G, Roman-Gonzalez A, Alva-Mantari A, Saldivar-Espinoza B, Zimic M, Barrientos-Porras F, et al. Method for the automatic segmentation of the palpebral conjunctiva using image processing. In : Proceedings of 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of automatic control (ICA-ACCA); 2018 Oct 17–19; Concepcion, Chile. p. 1–4.
https://doi.org/10.1109/ICA-ACCA.2018.8609744.

4. Chaparro CM, Suchdev PS. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann N Y Acad Sci. 2019; 1450(1):15–31.
https://doi.org/10.1111/nyas.14092.

5. Bauskar S, Jain P, Gyanchandani M. A noninvasive computerized technique to detect anemia using images of eye conjunctiva. Pattern Recognit Image Anal. 2019; 29:438–46.
https://doi.org/10.1134/S1054661819030027.

6. Fuadah YN, Sa’idah S, Wijayanto I, Patmasari R, Magdalena R. Non invasive anemia detection in pregnant women based on digital image processing and K-nearest neighbor. In : Proceedings of 2020, 3rd International Conference on Biomedical Engineering (IBIOMED); 2020 Oct 6–8; Yogyakarta, Indonesia. p. 60–4.
https://doi.org/10.1109/IBIOMED50285.2020.9487605.

8. Appiahene P, Arthur EJ, Korankye S, Afrifa S, Asare JW, Donkoh ET. Detection of anemia using conjunctiva images: a smartphone application approach. Med Nov Technol Devices. 2023; 18:100237.
https://doi.org/10.1016/j.medntd.2023.100237.

9. Purwanti E, Amelia H, Bustomi MA, Yatijan MA, Putri RN. Anemia Detection using convolutional neural network based on palpebral conjunctiva images. In : Proceedings of 2023, 14th International Conference on Information & Communication Technology and System (ICTS); 2023 Oct 4–5; Surabaya, Indonesia. p. 117–22.
https://doi.org/10.1109/ICTS58770.2023.10330869.

10. Dimauro G, Baldari L, Caivano D, Colucci G, Girardi F. Automatic segmentation of relevant sections of the conjunctiva for non-invasive anemia detection. In : Proceedings of 2018, 3rd International Conference on Smart and Sustainable Technologies (SpliTech); 2018 Jun 26–29; Split, Croatia. p. 1–5.
11. Kasiviswanathan S, Vijayan TB, John S. Ridge regression algorithm based non-invasive anaemia screening using conjunctiva images. J Ambient Intell Humaniz Comput. 2020. Oct. 22. [Epub].
https://doi.org/10.1007/s12652-020-02618-3.

13. Mannino RG, Myers DR, Tyburski EA, Caruso C, Boudreaux J, Leong T, et al. Smartphone app for noninvasive detection of anemia using only patient-sourced photos. Nat Commun. 2018; 9(1):4924.
https://doi.org/10.1038/s41467-018-07262-2.

14. Kumar RD, Guruprasad S, Kansara K, Rao KR, Mohan M, Reddy MR, et al. A novel noninvasive hemoglobin sensing device for anemia screening. IEEE Sens J. 2021; 21(13):15318–29.
https://doi.org/10.1109/JSEN.2021.3070971.

15. Dimauro G, Griseta ME, Camporeale MG, Clemente F, Guarini A, Maglietta R. An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset. Artif Intell Med. 2023; 136:102477.
https://doi.org/10.1016/j.artmed.2022.102477.

16. Dimauro G, Guarini A, Caivano D, Girardi F, Pasciolla C, Iacobazzi A. Detecting clinical signs of anaemia from digital images of the palpebral conjunctiva. IEEE Access. 2019; 7:113488–98.
https://doi.org/10.1109/ACCESS.2019.2932274.

18. Pflipsen M, Massaquoi M, Wolf S. Evaluation of the painful eye. Am Fam Physician. 2016; 93(12):991–8.