1. Ahn JK. Epidemiology and treatment-related concerns of gout and hyperuricemia in Korean. J Rheum Dis. 2023; 30(2):88–98. PMID:
37483480.
2. Park JS, Kang M, Song JS, Lim HS, Lee CH. Trends of gout prevalence in South Korea based on medical utilization: a National Health Insurance Service database (2002~2015). J Rheum Dis. 2020; 27(3):174–181.
3. Choi SW, Mak TS, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020; 15(9):2759–2772. PMID:
32709988.
4. Duncan L, Shen H, Gelaye B, Meijsen J, Ressler K, Feldman M, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019; 10(1):3328. PMID:
31346163.
5. Zhang Y, Yang R, Dove A, Li X, Yang H, Li S, et al. Healthy lifestyle counteracts the risk effect of genetic factors on incident gout: a large population-based longitudinal study. BMC Med. 2022; 20(1):138. PMID:
35484537.
6. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559–575. PMID:
17701901.
7. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015; 4(1):7. PMID:
25722852.
8. Hwang MY, Choi NH, Won HH, Kim BJ, Kim YJ. Analyzing the Korean reference genome with meta-imputation increased the imputation accuracy and spectrum of rare variants in the Korean population. Front Genet. 2022; 13:1008646. PMID:
36506321.
9. Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019; 51(10):1459–1474. PMID:
31578528.
10. Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, et al. GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis. 2017; 76(5):869–877. PMID:
27899376.
11. Li C, Li Z, Liu S, Wang C, Han L, Cui L, et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat Commun. 2015; 6(1):7041. PMID:
25967671.
12. Knevel R, le Cessie S, Terao CC, Slowikowski K, Cui J, Huizinga TW, et al. Using genetics to prioritize diagnoses for rheumatology outpatients with inflammatory arthritis. Sci Transl Med. 2020; 12(545):eaay1548. PMID:
32461333.
13. Mars N, Lindbohm JV, Della Briotta Parolo P, Widén E, Kaprio J, Palotie A, et al. Systematic comparison of family history and polygenic risk across 24 common diseases. Am J Hum Genet. 2022; 109(12):2152–2162. PMID:
36347255.
14. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021; 53(2):185–194. PMID:
33462484.
15. Tanigawa Y, Qian J, Venkataraman G, Justesen JM, Li R, Tibshirani R, et al. Significant sparse polygenic risk scores across 813 traits in UK Biobank. PLoS Genet. 2022; 18(3):e1010105. PMID:
35324888.
16. Privé F, Aschard H, Carmi S, Folkersen L, Hoggart C, O’Reilly PF, et al. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am J Hum Genet. 2022; 109(1):12–23. PMID:
34995502.
17. Sumpter NA, Takei R, Cadzow M, Topless RK, Phipps-Green AJ, Murphy R, et al. Association of gout polygenic risk score with age at disease onset and tophaceous disease in European and Polynesian men with gout. Arthritis Rheumatol. 2023; 75(5):816–825. PMID:
36281732.
18. Batt C, Phipps-Green AJ, Black MA, Cadzow M, Merriman ME, Topless R, et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann Rheum Dis. 2014; 73(12):2101–2106. PMID:
24026676.
19. Zhang T, Xu X, Chang Q, Lv Y, Zhao Y, Niu K, et al. Ultraprocessed food consumption, genetic predisposition, and the risk of gout: the UK Biobank study. Rheumatology (Oxford). 2024; 63(1):165–173. PMID:
37129545.
20. Li T, Li S, Tian T, Nie Z, Xu W, Liu L, et al. Association and interaction between dietary patterns and gene polymorphisms in Liangshan residents with hyperuricemia. Sci Rep. 2022; 12(1):1356. PMID:
35079028.
21. Tu HP, Chung CM, Ko AM, Lee SS, Lai HM, Lee CH, et al. Additive composite ABCG2, SLC2A9 and SLC22A12 scores of high-risk alleles with alcohol use modulate gout risk. J Hum Genet. 2016; 61(9):803–810. PMID:
27225847.
22. Jeon HK, Yoo HY. Single-nucleotide polymorphisms link gout with health-related lifestyle factors in Korean cohorts. PLoS One. 2023; 18(12):e0295038. PMID:
38060535.
23. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26(17):2190–2191. PMID:
20616382.
24. Lin K, McCormick N, Yokose C, Joshi AD, Lu N, Curhan GC, et al. Interactions between genetic risk and diet influencing risk of incident female gout: discovery and replication analysis of four prospective cohorts. Arthritis Rheumatol. 2023; 75(6):1028–1038. PMID:
36512683.
25. Zhang T, Gu Y, Meng G, Zhang Q, Liu L, Wu H, et al. Genetic risk, adherence to a healthy lifestyle, and hyperuricemia: the TCLSIH cohort study. Am J Med. 2023; 136(5):476–483.e5. PMID:
36708795.
26. Thompson MD, Wu YY, Cooney RV, Wilkens LR, Haiman CA, Pirkle CM. Modifiable factors and incident gout across ethnicity within a large multiethnic cohort of older adults. J Rheumatol. 2022; 49(5):504–512. PMID:
35105711.