1. Risoldi Cochrane Z, Gregory P, Wilson A. Readability of consumer health information on the internet: a comparison of U.S. government-funded and commercially funded websites. J Health Commun. 2012; 17(9):1003–10.
https://doi.org/10.1080/10810730.2011.650823.
2. Suarez-Lledo V, Alvarez-Galvez J. Prevalence of health misinformation on social media: systematic review. J Med Internet Res. 2021; 23(1):e17187.
https://doi.org/10.2196/17187.
3. Zhao Y, Zhu S, Wan Q, Li T, Zou C, Wang H, et al. Understanding how and by whom COVID-19 misinformation is spread on social media: coding and network analyses. J Med Internet Res. 2022; 24(6):e37623.
https://doi.org/10.2196/37623.
4. Lee JJ, Kang KA, Wang MP, Zhao SZ, Wong JY, O’Connor S, et al. Associations between COVID-19 misinformation exposure and belief with COVID-19 knowledge and preventive behaviors: cross-sectional online study. J Med Internet Res. 2020; 22(11):e22205.
https://doi.org/10.2196/22205.
5. Pickles K, Cvejic E, Nickel B, Copp T, Bonner C, Leask J, et al. COVID-19 misinformation trends in Australia: prospective longitudinal national survey. J Med Internet Res. 2021; 23(1):e23805.
https://doi.org/10.2196/23805.
6. Nsoesie EO, Cesare N, Muller M, Ozonoff A. COVID-19 misinformation spread in eight countries: exponential growth modeling study. J Med Internet Res. 2020; 22(12):e24425.
https://doi.org/10.2196/24425.
7. Ekong I, Chukwu E, Chukwu M. COVID-19 mobile positioning data contact tracing and patient privacy regulations: exploratory search of global response strategies and the use of digital tools in Nigeria. JMIR Mhealth Uhealth. 2020; 8(4):e19139.
https://doi.org/10.2196/19139.
9. Camacho-Rivera M, Islam JY, Rivera A, Vidot DC. Attitudes toward using COVID-19 mHealth tools among adults with chronic health conditions: secondary data analysis of the COVID-19 impact survey. JMIR Mhealth Uhealth. 2020; 8(12):e24693.
https://doi.org/10.2196/24693.
10. Kanera IM, Willems RA, Bolman CA, Mesters I, Zambon V, Gijsen BC, et al. Use and appreciation of a tailored self-management eHealth intervention for early cancer survivors: process evaluation of a randomized controlled trial. J Med Internet Res. 2016; 18(8):e229.
https://doi.org/10.2196/jmir.5975.
11. Nightingale R, Hall A, Gelder C, Friedl S, Brennan E, Swallow V. Desirable components for a customized, home-based, digital care-management app for children and young people with long-term, chronic conditions: a qualitative exploration. J Med Internet Res. 2017; 19(7):e235.
https://doi.org/10.2196/jmir.7760.
12. Riley WT, Rivera DE, Atienza AA, Nilsen W, Allison SM, Mermelstein R. Health behavior models in the age of mobile interventions: are our theories up to the task? Transl Behav Med. 2011; 1(1):53–71.
https://doi.org/10.1007/s13142-011-0021-7.
13. Kondylakis H, Katehakis DG, Kouroubali A, Logothetidis F, Triantafyllidis A, Kalamaras I, et al. COVID-19 mobile apps: a systematic review of the literature. J Med Internet Res. 2020; 22(12):e23170.
https://doi.org/10.2196/23170.
14. John Leon Singh H, Couch D, Yap K. Mobile health apps that help with COVID-19 management: scoping review. JMIR Nurs. 2020; 3(1):e20596.
https://doi.org/10.2196/20596.
15. Taghipour F, Ashrafi-Rizi H, Soleymani MR. Dissemination and acceptance of COVID-19 misinformation in iran: a qualitative study. Community Health Equity Res Policy. 2023; 43(3):283–91.
https://doi.org/10.1177/0272684X211022155.
16. Asadzadeh A, Mohammadzadeh Z, Fathifar Z, Jahangiri- Mirshekarlou S, Rezaei-Hachesu P. A framework for information technology-based management against COVID-19 in Iran. BMC Public Health. 2022; 22(1):402.
https://doi.org/10.1186/s12889-022-12781-1.
17. Aalaei S, Khoshrounejad F, Saleh LA, Amini M. Design of a mobile application and evaluation of its effects on psychological parameters of covid-19 inpatients: a protocol for a randomized controlled trial. Front Psychiatry. 2021; 12:612384.
https://doi.org/10.3389/fpsyt.2021.612384.
18. Hajesmaeel-Gohari S, Khordastan F, Fatehi F, Samzadeh H, Bahaadinbeigy K. The most used questionnaires for evaluating satisfaction, usability, acceptance, and quality outcomes of mobile health. BMC Med Inform Decis Mak. 2022; 22(1):22.
https://doi.org/10.1186/s12911-022-01764-2.
20. Faulkner L. Beyond the five-user assumption: benefits of increased sample sizes in usability testing. Behav Res Methods Instrum Comput. 2003; 35(3):379–83.
https://doi.org/10.3758/bf03195514.
23. Hussain M, Al-Haiqi A, Zaidan AA, Zaidan BB, Kiah ML, Anuar NB, et al. The landscape of research on smartphone medical apps: coherent taxonomy, motivations, open challenges and recommendations. Comput Methods Programs Biomed. 2015; 122(3):393–408.
https://doi.org/10.1016/j.cmpb.2015.08.015.
24. Salehinejad S, Niakan Kalhori SR, Hajesmaeel Gohari S, Bahaadinbeigy K, Fatehi F. A review and content analysis of national apps for COVID-19 management using Mobile Application Rating Scale (MARS). Inform Health Soc Care. 2021; 46(1):42–55.
https://doi.org/10.1080/17538157.2020.1837838.
25. Mohammad H, Elham M, Mehraeen E, Aghamohammadi V, Seyedalinaghi S, Kalantari S, et al. Identifying data elements and key features of a mobile-based self-care application for patients with COVID-19 in Iran. Health Informatics J. 2021; 27(4):14604582211065703.
https://doi.org/10.1177/14604582211065703.
26. Saeidnia H, Mohammadzadeh Z, Saeidnia M, Mahmoodzadeh A, Ghorbani N, Hasanzadeh M. Identifying Requirements of a Self-care System on smartphones for preventing coronavirus disease 2019 (COVID-19). Iran J Med Microbiol. 2020; 14(3):241–51.
https://doi.org/10.30699/ijmm.14.3.241.
27. Nouri R, Salari R, Kalhori SR, Ayyoubzadeh SM, Gholamzadeh M. Persian mobile health applications for COVID- 19: a use case-based study. J Educ Health Promot. 2022; 11:100.
https://doi.org/10.4103/jehp.jehp_759_21.