2. Wang RF, Wang HY. 2017; Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res. 27:11–37. DOI:
10.1038/cr.2016.155. PMID:
28025978. PMCID:
PMC5223235.

3. Letai A. 2017; Functional precision cancer medicine-moving beyond pure genomics. Nat Med. 23:1028–35. DOI:
10.1038/nm.4389. PMID:
28886003.

5. Frismantas V, Dobay MP, Rinaldi A, et al. 2017; Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 129:e26–37. DOI:
10.1182/blood-2016-09-738070. PMID:
28122742. PMCID:
PMC5356455.

7. Andersson EI, Pützer S, Yadav B, et al. 2018; Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia. 32:774–87. DOI:
10.1038/leu.2017.252. PMID:
28804127.

8. Ntafoulis I, Kleijn A, Ju J, et al. 2023; Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br J Cancer. 129:1327–38. DOI:
10.1038/s41416-023-02402-y. PMID:
37620410. PMCID:
PMC10575865.

9. Kropivsek K, Kachel P, Goetze S, et al. 2023; Ex vivo drug response heterogeneity reveals personalized therapeutic strategies for patients with multiple myeloma. Nat Cancer. 4:734–53. DOI:
10.1038/s43018-023-00544-9. PMID:
37081258. PMCID:
PMC10212768.

10. Swords RT, Azzam D, Al-Ali H, et al. 2018; Ex-vivo sensitivity profiling to guide clinical decision making in acute myeloid leukemia: A pilot study. Leuk Res. 64:34–41. DOI:
10.1016/j.leukres.2017.11.008. PMID:
29175379. PMCID:
PMC5756519.

11. Bohannan Z, Pudupakam RS, Koo J, et al. 2021; Predicting likelihood of in vivo chemotherapy response in canine lymphoma using ex vivo drug sensitivity and immunophenotyping data in a machine learning model. Vet Comp Oncol. 19:160–71. DOI:
10.1111/vco.12656. PMID:
33025640. PMCID:
PMC7894155.

12. Karjalainen R, Pemovska T, Yadav B, et al. 2013; Stromal cell supported highthroughput drug testing of primary leukemia cells for comprehensive assessment of sensitivity to novel therapies. Blood. 122:1668. DOI:
10.1182/blood.V122.21.1668.1668.

13. Huang S, Pang L. 2012; Comparing statistical methods for quantifying drug sensitivity based on in vitro dose-response assays. Assay Drug Dev Technol. 10:88–96. DOI:
10.1089/adt.2011.0388. PMID:
22066911.

14. Yadav B, Pemovska T, Szwajda A, et al. 2014; Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci Rep. 4:5193. DOI:
10.1038/srep05193. PMID:
24898935. PMCID:
PMC4046135.

15. Gupta A, Gautam P, Wennerberg K, Aittokallio T. 2020; A normalized drug response metric improves accuracy and consistency of anticancer drug sensitivity quantification in cell-based screening. Commun Biol. 3:42. DOI:
10.1038/s42003-020-0765-z. PMID:
31974521. PMCID:
PMC6978361.

18. Mosquera Orgueira A, González Pérez MS, Díaz Arias JÁ, et al. 2021; Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data. Leukemia. 35:2924–35. DOI:
10.1038/s41375-021-01286-2. PMID:
34007046.

22. Goh J, De Mel S, Hoppe MM, et al. 2022; An ex vivo platform to guide drug combination treatment in relapsed/refractory lymphoma. Sci Transl Med. 14:eabn7824. DOI:
10.1126/scitranslmed.abn7824. PMID:
36260690.

23. de Mel S, Rashid MB, Zhang XY, et al. 2020; Application of an ex-vivo drug sensitivity platform towards achieving complete remission in a refractory T-cell lymphoma. Blood Cancer J. 10:9. DOI:
10.1038/s41408-020-0276-7. PMID:
31988286. PMCID:
PMC6985240.

25. Kluza J, Lansiaux A, Wattez N, et al. 2000; Apoptotic response of HL-60 human leukemia cells to the antitumor drug TAS-103. Cancer Res. 60:4077–84.
26. Yang C, Lu P, Lee FY, et al. 2008; Tyrosine kinase inhibition in diffuse large B-cell lymphoma: Molecular basis for antitumor activity and drug resistance of dasatinib. Leukemia. 22:1755–66. DOI:
10.1038/leu.2008.163. PMID:
18596745.

27. Pan YZ, Wang X, Bai H, et al. 2015; Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin. Genet Mol Res. 14:5621–9. DOI:
10.4238/2015.May.25.14. PMID:
26125760.

28. Bennett TA, Montesinos P, Moscardo F, et al. 2014; Pharmacological profiles of acute myeloid leukemia treatments in patient samples by automated flow cytometry: A bridge to individualized medicine. Clin Lymphoma Myeloma Leuk. 14:305–18. DOI:
10.1016/j.clml.2013.11.006. PMID:
24468131.

29. Park S, Park SS, Cho BS, et al. 2023; Prognostic utility of the patient-derived AML cells' ex vivo drug sensitivity results. Blood. 142(Supplement 1):1523. DOI:
10.1182/blood-2023-183056.

30. Hijazi Y, Klinger M, Kratzer A, et al. 2018; Pharmacokinetic and pharmacodynamic relationship of Blinatumomab in patients with non-Hodgkin lymphoma. Curr Clin Pharmacol. 13:55–64. DOI:
10.2174/1574884713666180518102514. PMID:
29773068. PMCID:
PMC6327122.

31. Lin L, Tong Y, Straube J, et al. 2020; Ex-vivo drug testing predicts chemosensitivity in acute myeloid leukemia. J Leukoc Biol. 107:859–70. DOI:
10.1002/JLB.5A0220-676RR. PMID:
32293060.
32. Bonolo de Campos C, Meurice N, Petit JL, et al. 2020; 'Direct to Drug' screening as a precision medicine tool in multiple myeloma. Blood Cancer J. 10:54. DOI:
10.1038/s41408-020-0320-7. PMID:
32393731. PMCID:
PMC7214452.

33. Casulo C, Vose JM, Ho WY, et al. 2014; A phase I study of PRO131921, a novel anti-CD20 monoclonal antibody in patients with relapsed/refractory CD20+ indolent NHL: Correlation between clinical responses and AUC pharmacokinetics. Clin Immunol. 154:37–46. DOI:
10.1016/j.clim.2014.06.005. PMID:
24928323. PMCID:
PMC4348114.

34. Dufva O, Koski J, Maliniemi P, et al. 2020; Integrated drug profiling and CRISPR screening identify essential pathways for CAR T-cell cytotoxicity. Blood. 135:597–609. DOI:
10.1182/blood.2019002121. PMID:
31830245. PMCID:
PMC7098811.

38. Greenbaum AM, Fromm JR, Gopal AK, Houghton AM. 2022; Diffuse large B-cell lymphoma (DLBCL) is infiltrated with activated CD8+ T-cells despite immune checkpoint signaling. Blood Res. 57:117–28. DOI:
10.5045/br.2022.2021145. PMID:
35551108. PMCID:
PMC9242835.

39. Jang SY, Byun JM, Yoon SS, et al. 2023; Lenalidomide as a treatment for patients with AL amyloidosis and cardiac involvement. Blood Res. 58:242–5. DOI:
10.5045/br.2023.2023194. PMID:
38151962. PMCID:
PMC10758634.

40. Kim SI, Jung SH, Yhim HY, et al. 2022; Real-world evidence of levofloxacin prophylaxis in elderly patients with newly diagnosed multiple myeloma who received bortezomib, melphalan, and prednisone regimen. Blood Res. 57:51–8. DOI:
10.5045/br.2021.2021176. PMID:
35197371. PMCID:
PMC8958375.

41. Zheng M, Zhang H, Liu X, et al. 2022; SynergyFinder Plus: Toward better interpretation and annotation of drug combinations. Nucleic Acids Res. 49:594–601. DOI:
10.1101/2021.06.01.446564.
49. Hamann PR, Hinman LM, Hollander I, et al. 2002; Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 13:47–58. DOI:
10.1021/bc010021y. PMID:
11792178.

50. Laszlo GS, Gudgeon CJ, Harrington KH, et al. 2014; Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood. 123:554–61. DOI:
10.1182/blood-2013-09-527044. PMID:
24311721. PMCID:
PMC3901068.

51. Kovtun Y, Jones GE, Adams S, et al. 2018; A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2:848–58. DOI:
10.1182/bloodadvances.2018017517. PMID:
29661755. PMCID:
PMC5916008.

52. Nair-Gupta P, Diem M, Reeves D, et al. 2020; A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia. Blood Adv. 4:906–19. DOI:
10.1182/bloodadvances.2019001188. PMID:
32150609. PMCID:
PMC7065489.

53. Gauthier L, Virone-Oddos A, Beninga J, et al. 2023; Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123. Nat Biotechnol. 41:1296–306. DOI:
10.1038/s41587-022-01626-2. PMID:
36635380. PMCID:
PMC10497414.

55. Herter S, Herting F, Mundigl O, et al. 2013; Preclinical activity of the type II CD20 antibody GA101 (Obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 12:2031–42. DOI:
10.1158/1535-7163.MCT-12-1182. PMID:
23873847.
56. Li X, Abrahams C, Yu A, et al. 2023; Targeting CD74 in B-cell non-Hodgkin lymphoma with the antibody-drug conjugate STRO-001. Oncotarget. 14:1–13. DOI:
10.18632/oncotarget.28341. PMID:
36634212. PMCID:
PMC9836384.

57. Wang Y, Zhang Y, Hughes T, et al. 2018; Fratricide of NK cells in daratumumab therapy for multiple myeloma overcome by ex vivo-expanded autologous NK cells. Clin Cancer Res. 24:4006–17. DOI:
10.1158/1078-0432.CCR-17-3117. PMID:
29666301. PMCID:
PMC6095810.
58. Walker ZJ, VanWyngarden MJ, Stevens BM, et al. 2020; Measurement of ex vivo resistance to proteasome inhibitors, IMiDs, and daratumumab during multiple myeloma progression. Blood Adv. 4:1628–39. DOI:
10.1182/bloodadvances.2019000122. PMID:
32311014. PMCID:
PMC7189287.

59. Casneuf T, Xu XS, Adams HC III, et al. 2017; Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 1:2105–14. DOI:
10.1182/bloodadvances.2017006866. PMID:
29296857. PMCID:
PMC5728278.

61. Rutella S, Bonanno G, Procoli A, et al. 2006; Granulocyte colony-stimulating factor enhances the in vitro cytotoxicity of gemtuzumab ozogamicin against acute myeloid leukemia cell lines and primary blast cells. Exp Hematol. 34:54–65. DOI:
10.1016/j.exphem.2005.10.003. PMID:
16413391.

62. Ten Cate B, Bremer E, de Bruyn M, et al. 2009; A novel AML-selective TRAIL fusion protein that is superior to gemtuzumab ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia. 23:1389–97. DOI:
10.1038/leu.2009.34. PMID:
19262596.

63. Chow KU, Sommerlad WD, Boehrer S, et al. 2002; Anti-CD20 antibody (IDECC2B8, rituximab) enhances efficacy of cytotoxic drugs on neoplastic lymphocytes in vitro: Role of cytokines, complement, and caspases. Haematologica. 87:33–43.