1.Jastreboff AM., Aronne LJ., Ahmad NN., Wharton S., Con-nery L., Alves B., SURMOUNT-1 Investigators, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022. 387:205–16.
2.Frías JP., Davies MJ., Rosenstock J., Pérez Manghi FC., Fernández Landó L., Bergman BK., SURPASS-2 Investigators, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021. 385:503–15.
3.Nauck MA., Heimesaat MM., Orskov C., Holst JJ., Ebert R., Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993. 91:301–7.
4.Mentis N., Vardarli I., Köthe LD., Holst JJ., Deacon CF., The-odorakis M, et al. GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes. 2011. 60:1270–6.
5.Nauck MA., Quast DR., Wefers J., Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab. 2021. 23(Suppl 3):5–29.
6.Højberg PV., Vilsbøll T., Rabøl R., Knop FK., Bache M., Krarup T, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009. 52:199–207.
7.Piteau S., Olver A., Kim SJ., Winter K., Pospisilik JA., Lynn F, et al. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun. 2007. 362:1007–12.
8.Finan B., Ma T., Ottaway N., Müller TD., Habegger KM., Heppner KM, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013. 5:209ra151.
9.Frias JP., Bastyr EJ 3rd., Vignati L., Tschöp MH., Schmitt C., Owen K, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 2017. 26:343–52.e2.
10.Coskun T., Sloop KW., Loghin C., Alsina-Fernandez J., Urva S., Bokvist KB, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018. 18:3–14.
11.Samms RJ., Christe ME., Collins KA., Pirro V., Droz BA., Holland AK, et al. GIPR agonism mediates weight-inde-pendent insulin sensitization by tirzepatide in obese mice. J Clin Invest. 2021. 131:e146353.
12.Samms RJ., Zhang G., He W., Ilkayeva O., Droz BA., Bauer SM, et al. Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. Mol Metab. 2022. 64:101550.
13.El K., Douros JD., Willard FS., Novikoff A., Sargsyan A., Perez-Tilve D, et al. The incretin co-agonist tirzepatide requires GIPR for hormone secretion from human islets. Nat Metab. 2023. 5:945–54.
14.Nauck MA., D'Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022. 21:169.
15.Sparre-Ulrich AH., Hansen LS., Svendsen B., Christensen M., Knop FK., Hartmann B, et al. Species-specific action of (Pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br J Pharmacol. 2016. 173:27–38.
16.Shenoy SK., Lefkowitz RJ. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci. 2011. 32:521–33.
17.Willard FS., Douros JD., Gabe MB., Showalter AD., Wain-scott DB., Suter TM, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI In-sight. 2020. 5:e140532.
18.Schelshorn D., Joly F., Mutel S., Hampe C., Breton B., Mutel V, et al. Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled recep-tor heteromer formation. Mol Pharmacol. 2012. 81:309–18.
19.Wang YZ., Yang DH., Wang MW. Signaling profiles in HEK 293T cells co-expressing GLP-1 and GIP receptors. Acta Pharmacol Sin. 2022. 43:1453–60.
20.Alicic RZ., Neumiller JJ., Tuttle KR. Mechanisms and clinical applications of incretin therapies for diabetes and chronic kidney disease. Curr Opin Nephrol Hypertens. 2023. 32:377–85.
21.Chen X., He X., Guo Y., Liu L., Li H., Tan J, et al. Glu-cose-dependent insulinotropic polypeptide modifies adipose plasticity and promotes beige adipogenesis of human omental adipose-derived stem cells. FASEB J. 2021. 35:e21534.
22.Asmar M., Asmar A., Simonsen L., Dela F., Holst JJ., Bülow J. GIP-induced vasodilation in human adipose tissue involves capillary recruitment. Endocr Connect. 2019. 8:806–13.
23.Heise T., Mari A., DeVries JH., Urva S., Li J., Pratt EJ, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, ran-domised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022. 10:418–29.
24.Heise T., DeVries JH., Urva S., Li J., Pratt EJ., Thomas MK, et al. Tirzepatide reduces appetite, energy intake, and fat mass in people with type 2 diabetes. Diabetes Care. 2023. 46:998–1004.
25.Ravussin E., Sanchez-Delgado G., Martin CK., Nishiyama H., Li J., Urva S, et al. 127-OR: The effect of tirzepatide during weight loss on metabolic adaption, fat oxidation, and food intake in people with obesity. Diabetes. 2023. 72(Suppl 1):127–OR.
26.Martin CK., Ravussin E., Sanchez-Delgado G., Nishiyama H., Li J., Urva S, et al. 128-OR: The effect of tirzepatide during weight loss on food intake, appetite, food prefer-ence, and food craving in people with obesity. Diabetes. 2023. 72(Suppl 1):128–OR.