1. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115–8.
https://doi.org/10.1038/nature21056.

2. Abedini M, Codella NC, Connell JH, Garnavi R, Merler M, Pankanti S, et al. A generalized framework for medical image classification and recognition. IBM J Res Dev. 2015; 59(2/3):1–18.
https://doi.org/10.1147/JRD.2015.2390017.

3. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018; 29(8):1836–42.
https://doi.org/10.1093/annonc/mdy166.

4. Kumar P, Srivastava MM. Example mining for incremental learning in medical imaging. In : Proceedings of 2018 IEEE Symposium Series on Computational Intelligence (SSCI); 2018 Nov 18–21; Bangalore, India. 48–51.
https://doi.org/10.1109/SSCI.2018.8628895.

5. Yan S, Xie J, He X. DER: dynamically expandable representation for class incremental learning. In : Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jan 20–25; Nashville, TN, USA. p. 3014–23.
https://doi.org/10.1109/CVPR46437.2021.00303.

6. Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data. 2018; 5:180161.
https://doi.org/10.1038/sdata.2018.161.

7. Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC). In : Proceedings of 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI); 2018 Apr 4–7; Washington, DC, USA. p. 168–72.
https://doi.org/10.1109/ISBI.2018.8363547.

8. Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV. AutoAugment: learning augmentation strategies from data. In : Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15–20; Long Beach, CA, USA. p. 113–23.
https://doi.org/10.1109/CVPR.2019.00020.

10. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In : Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27 30; Las Vegas, NV, USA. p. 770–8.
https://doi.org/10.1109/CVPR.2016.90.

11. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med. 2013; 4(2):627–35.
12. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In : Proceedings of the IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22–29; Venice, Italy. p. 618–26.
https://doi.org/10.1109/ICCV.2017.74.

13. Popescu D, El-Khatib M, Ichim L. Skin lesion classification using collective intelligence of multiple neural networks. Sensors (Basel). 2022; 22(12):4399.
https://doi.org/10.3390/s22124399.

15. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, et al. Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci U S A. 2017; 114(13):3521–6.
https://doi.org/10.1073/pnas.1611835114.

16. Althnian A, AlSaeed D, Al-Baity H, Samha A, Dris AB, Alzakari N, et al. Impact of dataset size on classification performance: an empirical evaluation in the medical domain. Appl Sci. 2021; 11(2):796.
https://doi.org/10.3390/app11020796.

18. Lupton E. Skin: surface, substance, and design. New York (NY): Princeton Architectural Press;2007.
19. Chen X, Wen J, Wu W, Peng Q, Cui X, He L. A review of factors influencing sensitive skin: an emphasis on built environment characteristics. Front Public Health. 2023; 11:1269314.
https://doi.org/10.3389/fpubh.2023.1269314.

20. Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, et al. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy. 2022; 77(5):1418–49.
https://doi.org/10.1111/all.15240.

21. Popescu D, El-Khatib M, El-Khatib H, Ichim L. New trends in melanoma detection using neural networks: a systematic review. Sensors (Basel). 2022; 22(2):496.
https://doi.org/10.3390/s22020496.
