3. Lorenzin M, Ometto F, Ortolan A, Felicetti M, Favero M, Doria A, et al. 2020; An update on serum biomarkers to assess axial spondyloarthritis and to guide treatment decision. Ther Adv Musculoskelet Dis. 12:1759720X20934277. DOI:
10.1177/1759720X20934277. PMID:
32636944. PMCID:
PMC7315656.
4. Rademacher J, Tietz LM, Le L, Hartl A, Hermann KA, Sieper J, et al. 2019; Added value of biomarkers compared with clinical parameters for the prediction of radiographic spinal progression in axial spondyloarthritis. Rheumatology (Oxford). 58:1556–64. DOI:
10.1093/rheumatology/kez025. PMID:
30830164.
6. Fontanella S, Cucco A, Custovic A. 2021; Machine learning in asthma research: moving toward a more integrated approach. Expert Rev Respir Med. 15:609–21. DOI:
10.1080/17476348.2021.1894133. PMID:
33618597.
7. Beckmann JS, Lew D. 2016; Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. Genome Med. 8:134. DOI:
10.1186/s13073-016-0388-7. PMID:
27993174. PMCID:
PMC5165712.
9. Rumsfeld JS, Joynt KE, Maddox TM. 2016; Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol. 13:350–9. DOI:
10.1038/nrcardio.2016.42. PMID:
27009423.
10. van der Linden S, Valkenburg HA, Cats A. 1984; Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27:361–8. DOI:
10.1002/art.1780270401. PMID:
6231933.
11. Creemers MC, Franssen MJ, Gribnau FW, van de Putte LB, van Riel PL. van't Hof MA. 2005; Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis. 64:127–9. DOI:
10.1136/ard.2004.020503. PMID:
15051621. PMCID:
PMC1755183.
12. van der Heijde D, Braun J, Deodhar A, Baraliakos X, Landewé R, Richards HB, et al. 2019; Modified stoke ankylosing spondylitis spinal score as an outcome measure to assess the impact of treatment on structural progression in ankylosing spondylitis. Rheumatology (Oxford). 58:388–400. DOI:
10.1093/rheumatology/key128. PMID:
29860356. PMCID:
PMC6381766.
13. Koo BS, Oh JS, Park SY, Shin JH, Ahn GY, Lee S, et al. 2020; Tumour necrosis factor inhibitors slow radiographic progression in patients with ankylosing spondylitis: 18-year real-world evidence. Ann Rheum Dis. 79:1327–32. DOI:
10.1136/annrheumdis-2019-216741. PMID:
32660979.
14. Lee TH, Koo BS, Nam B, Oh JS, Park SY, Lee S, et al. 2020; Conventional disease-modifying antirheumatic drugs therapy may not slow spinal radiographic progression in ankylosing spondylitis: results from an 18-year longitudinal dataset. Ther Adv Musculoskelet Dis. 12:1759720X20975912. DOI:
10.1177/1759720X20975912. PMID:
33294039. PMCID:
PMC7705797.
15. Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH, et al. 2013; The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 65:2645–54. DOI:
10.1002/art.38070. PMID:
23818109. PMCID:
PMC3974160.
16. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. 2011; Scikit-learn: machine learning in Python. J Mach Learn Res. 12:2825–30.
18. Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM. 2016; Extreme gradient boosting as a method for quantitative structure-activity relationships. J Chem Inf Model. 56:2353–60. Erratum in: J Chem Inf Model 2020;60:1910. DOI:
10.1021/acs.jcim.6b00591. PMID:
27958738.
19. Kim JH. 2009; Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comput Stat Data Anal. 53:3735–45. DOI:
10.1016/j.csda.2009.04.009.
22. Poddubnyy D, Haibel H, Listing J, Märker-Hermann E, Zeidler H, Braun J, et al. 2012; Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum. 64:1388–98. DOI:
10.1002/art.33465. PMID:
22127957.
23. Poddubnyy D, Protopopov M, Haibel H, Braun J, Rudwaleit M, Sieper J. 2016; High disease activity according to the Ankylosing Spondylitis Disease Activity Score is associated with accelerated radiographic spinal progression in patients with early axial spondyloarthritis: results from the GErman SPondyloarthritis Inception Cohort. Ann Rheum Dis. 75:2114–8. DOI:
10.1136/annrheumdis-2016-209209. PMID:
27125522.
24. Poddubnyy DA, Rudwaleit M, Listing J, Braun J, Sieper J. 2010; Comparison of a high sensitivity and standard C reactive protein measurement in patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis. Ann Rheum Dis. 69:1338–41. DOI:
10.1136/ard.2009.120139. PMID:
20498207.
25. Ramiro S, van der Heijde D, van Tubergen A, Stolwijk C, Dougados M, van den Bosch F, et al. 2014; Higher disease activity leads to more structural damage in the spine in ankylosing spondylitis: 12-year longitudinal data from the OASIS cohort. Ann Rheum Dis. 73:1455–61. DOI:
10.1136/annrheumdis-2014-205178. PMID:
24812292.
26. Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P. 2017; Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol. 13:429–42. DOI:
10.1038/nrneph.2017.60. PMID:
28502983.
27. Cheung BM, Ong KL, Cheung RV, Wong LY, Wat NM, Tam S, et al. 2008; Association between plasma alkaline phosphatase and C-reactive protein in Hong Kong Chinese. Clin Chem Lab Med. 46:523–7. DOI:
10.1515/CCLM.2008.111. PMID:
18605934.
28. Damera S, Raphael KL, Baird BC, Cheung AK, Greene T, Beddhu S. 2011; Serum alkaline phosphatase levels associate with elevated serum C-reactive protein in chronic kidney disease. Kidney Int. 79:228–33. DOI:
10.1038/ki.2010.356. PMID:
20881941. PMCID:
PMC5260661.
29. Kang KY, Hong YS, Park SH, Ju JH. 2015; Increased serum alkaline phosphatase levels correlate with high disease activity and low bone mineral density in patients with axial spondyloarthritis. Semin Arthritis Rheum. 45:202–7. DOI:
10.1016/j.semarthrit.2015.03.002. PMID:
25895696.
31. Koo BS, Lee S, Oh JS, Park SY, Ahn GY, Shin JH, et al. 2022; Early control of C-reactive protein levels with non-biologics is associated with slow radiographic progression in radiographic axial spondyloarthritis. Int J Rheum Dis. 25:311–6. DOI:
10.1111/1756-185X.14268. PMID:
34935282.
33. Deodhar A, Rozycki M, Garges C, Shukla O, Arndt T, Grabowsky T, et al. 2020; Use of machine learning techniques in the development and refinement of a predictive model for early diagnosis of ankylosing spondylitis. Clin Rheumatol. 39:975–82. DOI:
10.1007/s10067-019-04553-x. PMID:
31044386.
34. Walsh JA, Pei S, Penmetsa G, Hansen JL, Cannon GW, Clegg DO, et al. 2020; Identification of axial spondyloarthritis patients in a large dataset: the development and validation of novel methods. J Rheumatol. 47:42–9. DOI:
10.3899/jrheum.181005. PMID:
30877217.
35. Walsh JA, Pei S, Penmetsa GK, Leng J, Cannon GW, Clegg DO, et al. 2018; Cohort identification of axial spondyloarthritis in a large healthcare dataset: current and future methods. BMC Musculoskelet Disord. 19:317. DOI:
10.1186/s12891-018-2211-7. PMID:
30185185. PMCID:
PMC6123987.
36. Walsh JA, Shao Y, Leng J, He T, Teng CC, Redd D, et al. 2017; Identifying axial spondyloarthritis in electronic medical records of US veterans. Arthritis Care Res (Hoboken). 69:1414–20. DOI:
10.1002/acr.23140. PMID:
27813310.
37. Bressem KK, Vahldiek JL, Adams L, Niehues SM, Haibel H, Rodriguez VR, et al. 2021; Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance. Arthritis Res Ther. 23:106. DOI:
10.1186/s13075-021-02484-0. PMID:
33832519. PMCID:
PMC8028815.
38. Joo YB, Baek IW, Park YJ, Park KS, Kim KJ. 2020; Machine learning-based prediction of radiographic progression in patients with axial spondyloarthritis. Clin Rheumatol. 39:983–91. DOI:
10.1007/s10067-019-04803-y. PMID:
31667645.