1. Choi M, Kim M, Kim JA, Chang H.Building consensus on the priority-setting for national policies in health information technology: a Delphi survey. Healthc Inform Res. 2020; 26(3):229–37.
https://doi.org/10.4258/hir.2020.26.3.229.
2. Bauer AM, Thielke SM, Katon W, Unutzer J, Arean P.Aligning health information technologies with effective service delivery models to improve chronic disease care. Prev Med. 2014; 66:167–72.
https://doi.org/10.1016/j.ypmed.2014.06.017.
3. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017; 2(4):230–43.
https://doi.org/10.1136/svn-2017-000101.
5. Ministry of Science. Study on the effect of the IoT introduction. Seoul, Korea: Korea Association for ICT Promotion;2015.
7. Moser LE, Melliar-Smith P. Personal health monitoring using a smartphone. In : Proceedings of 2015 IEEE International Conference on Mobile Services; 2015 Jun 27-Jul 2; New York, NY. p. 344–51.
https://doi.org/10.1109/MobServ.2015.54.
8. Kulkarni A, Sathe S.Healthcare applications of the Internet of Things: a review. Int J Comput Sci Inf Technol. 2014; 5(5):6229–32.
10. Lui TK, Tsui VW, Leung WK.Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis. Gastrointest Endosc. 2020; 92(4):821–30.
https://doi.org/10.1016/j.gie.2020.06.034.
11. Lui TK, Guo CG, Leung WK.Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: a systematic review and meta-analysis. Gastrointest Endosc. 2020; 92(1):11–22.
https://doi.org/10.1016/j.gie.2020.02.033.
12. Zhao WJ, Fu LR, Huang ZM, Zhu JQ, Ma BY.Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(32):e16379.
https://doi.org/10.1097/md.0000000000016379.
13. Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J.Machine learning applications for the differentiation of primary central nervous system lymphoma from glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus. 2018; 45(5):E5.
https://doi.org/10.3171/2018.8.focus18325.
14. Zheng X, He B, Hu Y, Ren M, Chen Z, Zhang Z, et al. Diagnostic accuracy of deep learning and radiomics in lung cancer staging: a systematic review and meta-analysis. Front Public Health. 2022; 10:938113.
https://doi.org/10.3389/fpubh.2022.938113.
15. Xu HL, Gong TT, Liu FH, Chen HY, Xiao Q, Hou Y, et al. Artificial intelligence performance in image-based ovarian cancer identification: a systematic review and meta-analysis. EClinicalMedicine. 2022; 53:101662.
https://doi.org/10.1016/j.eclinm.2022.101662.
16. Islam MM, Poly TN, Walther BA, Yang HC, Li YJ.Artificial intelligence in ophthalmology: a meta-analysis of deep learning models for retinal vessels segmentation. J Clin Med. 2020; 9(4):1018.
https://doi.org/10.3390/jcm9041018.
17. Wang S, Zhang Y, Lei S, Zhu H, Li J, Wang Q, et al. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy. Eur J Endocrinol. 2020; 183(1):41–9.
https://doi.org/10.1530/eje-19-0968.
18. Zhang H, Wang AY, Wu S, Ngo J, Feng Y, He X, et al. Artificial intelligence for the prediction of acute kidney injury during the perioperative period: systematic review and meta-analysis of diagnostic test accuracy. BMC Nephrol. 2022; 23(1):405.
https://doi.org/10.1186/s12882-022-03025-w.
19. Lei N, Zhang X, Wei M, Lao B, Xu X, Zhang M, et al. Machine learning algorithms’ accuracy in predicting kidney disease progression: a systematic review and meta-analysis. BMC Med Inform Decis Mak. 2022; 22(1):205.
https://doi.org/10.1186/s12911-022-01951-1.
20. Tang CX, Wang YN, Zhou F, Schoepf UJ, Assen MV, Stroud RE, et al. Diagnostic performance of fractional flow reserve derived from coronary CT angiography for detection of lesion-specific ischemia: a multi-center study and meta-analysis. Eur J Radiol. 2019; 116:90–7.
https://doi.org/10.1016/j.ejrad.2019.04.011.
21. Li XM, Gao XY, Tse G, Hong SD, Chen KY, Li GP, et al. Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and metaanalysis. J Geriatr Cardiol. 2022; 19(12):970–80.
https://doi.org/10.11909/j.issn.1671-5411.2022.12.002.
22. Islam MM, Nasrin T, Walther BA, Wu CC, Yang HC, Li YC.Prediction of sepsis patients using machine learning approach: a meta-analysis. Comput Methods Programs Biomed. 2019; 170:1–9.
https://doi.org/10.1016/j.cmpb.2018.12.027.
23. Li Y, Zhang Z, Dai C, Dong Q, Badrigilan S.Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: a systematic review and meta-analysis. Comput Biol Med. 2020; 123:103898.
https://doi.org/10.1016/j.compbiomed.2020.103898.
24. Balayla J, Shrem G.Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta-analysis. Arch Gynecol Obstet. 2019; 300(1):7–14.
https://doi.org/10.1007/s00404-019-05151-7.
25. Hassanipour S, Ghaem H, Arab-Zozani M, Seif M, Fararouei M, Abdzadeh E, et al. Comparison of artificial neural network and logistic regression models for prediction of outcomes in trauma patients: a systematic review and meta-analysis. Injury. 2019; 50(2):244–50.
https://doi.org/10.1016/j.injury.2019.01.007.
26. Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018; 241:519–32.
https://doi.org/10.1016/j.jad.2018.08.073.
27. Alharbe N, Atkins AS.A study of the application of automatic healthcare tracking and monitoring system in Saudi Arabia. Int J Pervasive Comput Commun. 2014; 10(2):183–95.
https://doi.org/10.1108/IJPCC-03-2014-0026.
29. Price M, Bellwood P, Kitson N, Davies I, Weber J, Lau F.Conditions potentially sensitive to a personal health record (PHR) intervention, a systematic review. BMC Med Inform Decis Mak. 2015; 15:32.
https://doi.org/10.1186/s12911-015-0159-1.
30. Han HR, Gleason KT, Sun CA, Miller HN, Kang SJ, Chow S, et al. Using patient portals to improve patient outcomes: systematic review. JMIR Hum Factors. 2019; 6(4):e15038.
https://doi.org/10.2196/15038.
32. Balzarini F, Frascella B, Oradini-Alacreu A, Gaetti G, Lopalco PL, Edelstein M, et al. Does the use of personal electronic health records increase vaccine uptake? A systematic review. Vaccine. 2020; 38(38):5966–78.
https://doi.org/10.1016/j.vaccine.2020.05.083.
35. Tomasev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019; 572(7767):116–9.
https://doi.org/10.1038/s41586-019-1390-1.
37. Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ Glob Health. 2018; 3(4):e000798.
https://doi.org/10.1136/bmjgh-2018-000798.
38. Sushilan A.Survey of real time healthcare. Int J Eng Sci Res Technol. 2015; 4(12):728–36.
39. Habibzadeh H, Dinesh K, Shishvan OR, Boggio-Dandry A, Sharma G, Soyata T.A survey of healthcare Internet of Things (HIoT): a clinical perspective. IEEE Internet of Things J. 2019; 7(1):53–71.
https://doi.org/10.1109/JIOT.2019.2946359.
40. Park YR, Son SY, Kim CW, Kang HY, Oh JS, Kim HY, et al. Internet evolution and socioeconomic paradigm change: focused on the Internet of Things. Jincheon, Korea: Korea Information Society Development Institute;2015.
42. Alharbe N, Atkins AS, Akbari AS. Application of Zig-Bee and RFID technologies in healthcare in conjunction with the Internet of Things. In : Proceedings of International Conference on Advances in Mobile Computing & Multimedia; 2013 Dec 3; Vienna, Austria. p. 191–5.
https://doi.org/10.1145/2536853.2536904.
44. Masterson Creber RM, Grossman LV, Ryan B, Qian M, Polubriaginof FCG, Restaino S, et al. Engaging hospitalized patients with personalized health information: a randomized trial of an inpatient portal. J Am Med Inform Assoc. 2019; 26(2):115–23.
https://doi.org/10.1093/jamia/ocy146.
45. Dumitrascu AG, Burton MC, Dawson NL, Thomas CS, Nordan LM, Greig HE, et al. Patient portal use and hospital outcomes. J Am Med Inform Assoc. 2018; 25(4):447–53.
https://doi.org/10.1093/jamia/ocx149.
46. O’Leary KJ, Lohman ME, Culver E, Killarney A, Randy Smith G, Liebovitz DM.The effect of tablet computers with a mobile patient portal application on hospitalized patients’ knowledge and activation. J Am Med Inform Assoc. 2016; 23(1):159–65.
https://doi.org/10.1093/jamia/ocv058.
47. Ross SE, Moore LA, Earnest MA, Wittevrongel L, Lin CT.Providing a web-based online medical record with electronic communication capabilities to patients with congestive heart failure: randomized trial. J Med Internet Res. 2004; 6(2):e12.
https://doi.org/10.2196/jmir.6.2.e12.
48. Simon GE, Ralston JD, Savarino J, Pabiniak C, Wentzel C, Operskalski BH.Randomized trial of depression follow-up care by online messaging. J Gen Intern Med. 2011; 26(7):698–704.
https://doi.org/10.1007/s11606-011-1679-8.
49. Graham TA, Ali S, Avdagovska M, Ballermann M.Effects of a web-based patient portal on patient satisfaction and missed appointment rates: survey study. J Med Internet Res. 2020; 22(5):e17955.
https://doi.org/10.2196/17955.
50. Palen TE, Ross C, Powers JD, Xu S.Association of online patient access to clinicians and medical records with use of clinical services. JAMA. 2012; 308(19):2012–9.
https://doi.org/10.1001/jama.2012.14126.
52. Koo D, Lee AR, Lee E, Kim IK.Development of a frailty detection model using machine learning with the Korean frailty and aging cohort study data. Healthc Inform Res. 2022; 28(3):231–9.
https://doi.org/10.4258/hir.2022.28.3.231.
54. Senbekov M, Saliev T, Bukeyeva Z, Almabayeva A, Zhanaliyeva M, Aitenova N, et al. The recent progress and applications of digital technologies in healthcare: a review. Int J Telemed Appl. 2020; 2020:8830200.
https://doi.org/10.1155/2020/8830200.