2. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. 2007; Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 89:780–5. DOI:
10.2106/00004623-200704000-00012. PMID:
17403800.

3. Parvizi J, Nunley RM, Berend KR, Lombardi AV Jr, Ruh EL, Clohisy JC, et al. 2014; High level of residual symptoms in young patients after total knee arthroplasty. Clin Orthop Relat Res. 472:133–7. DOI:
10.1007/s11999-013-3229-7. PMID:
24061845. PMCID:
PMC3889453.

4. Beswick AD, Wylde V, Gooberman-Hill R, Blom A, Dieppe P. 2012; What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open. 2:e000435. DOI:
10.1136/bmjopen-2011-000435. PMID:
22357571. PMCID:
PMC3289991.

6. Zapparoli L, Sacheli LM, Seghezzi S, Preti M, Stucovitz E, Negrini F, et al. 2020; Motor imagery training speeds up gait recovery and decreases the risk of falls in patients submitted to total knee arthroplasty. Sci Rep. 10:8917. DOI:
10.1038/s41598-020-65820-5. PMID:
32488010. PMCID:
PMC7265300.

7. Briones-Cantero M, Fernández-de-Las-Peñas C, Lluch-Girbés E, Osuna-Pérez MC, Navarro-Santana MJ, Plaza-Manzano G, et al. 2020; Effects of adding motor imagery to early physical therapy in patients with knee osteoarthritis who had received total knee arthroplasty: a randomized clinical trial. Pain Med. 21:3548–55. DOI:
10.1093/pm/pnaa103. PMID:
32346743.

8. Moukarzel M, Di Rienzo F, Lahoud JC, Hoyek F, Collet C, Guillot A, et al. 2019; The therapeutic role of motor imagery during the acute phase after total knee arthroplasty: a pilot study. Disabil Rehabil. 41:926–33. DOI:
10.1080/09638288.2017.1419289. PMID:
29275638.

9. Roy JS, Bouyer LJ, Langevin P, Mercier C. 2017; Beyond the joint: the role of central nervous system reorganizations in chronic musculoskeletal disorders. J Orthop Sports Phys Ther. 47:817–21. DOI:
10.2519/jospt.2017.0608. PMID:
29089002.
10. Riquelme-Hernández C, Reyes-Barría JP, Vargas A, Gonzalez-Robaina Y, Zapata-Lamana R, Toloza-Ramirez D, et al. 2022; Effects of the practice of movement representation techniques in people undergoing knee and hip arthroplasty: a systematic review. Sports (Basel). 10:198. DOI:
10.3390/sports10120198. PMID:
36548495. PMCID:
PMC9782171. PMID:
f42d0ec536814320af6573e6ba3bf5f2.

13. Strauss S, Barby S, Härtner J, Pfannmöller JP, Neumann N, Moseley GL, et al. 2021; Graded motor imagery modifies movement pain, cortical excitability and sensorimotor function in complex regional pain syndrome. Brain Commun. 3:fcab216. DOI:
10.1093/braincomms/fcab216. PMID:
34661105. PMCID:
PMC8514858.

14. Moseley GL. 2005; Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain. 114:54–61. DOI:
10.1016/j.pain.2004.11.024. PMID:
15733631.

15. Dilek B, Ayhan C, Yagci G, Yakut Y. 2018; Effectiveness of the graded motor imagery to improve hand function in patients with distal radius fracture: a randomized controlled trial. J Hand Ther. 31:2–9.e1. DOI:
10.1016/j.jht.2017.09.004. PMID:
29122370.

16. Moukarzel M, Guillot A, Di Rienzo F, Hoyek N. 2019; The therapeutic role of motor imagery during the chronic phase after total knee arthroplasty: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 55:806–15. DOI:
10.23736/S1973-9087.19.05136-0. PMID:
31615192.

17. Louw A, Schmidt SG, Louw C, Puentedura EJ. 2015; Moving without moving: immediate management following lumbar spine surgery using a graded motor imagery approach: a case report. Physiother Theory Pract. 31:509–17. DOI:
10.3109/09593985.2015.1060656. PMID:
26395828.

18. Dudhani S, Anwar KAM, Jain PK. 2020; Can brain cure pain and fear? Effect of graded motor imagery on post operative lumbar degenerative diseases - randomized control trial. Indian J Physiother Occup Ther. 14:219–26. DOI:
10.37506/ijpot.v14i3.9698.
19. Birinci T, Kaya Mutlu E, Altun S. 2022; The efficacy of graded motor imagery in post-traumatic stiffness of elbow: a randomized controlled trial. J Shoulder Elbow Surg. 31:2147–56. DOI:
10.1016/j.jse.2022.05.031. PMID:
35803550.

20. Lee HG, An J, Lee BH. 2021; The effect of progressive dynamic balance training on physical function, the ability to balance and quality of life among elderly women who underwent a total knee arthroplasty: a double-blind randomized control trial. Int J Environ Res Public Health. 18:2513. DOI:
10.3390/ijerph18052513. PMID:
33802559. PMCID:
PMC7967306.

21. Lagueux E, Charest J, Lefrançois-Caron E, Mauger ME, Mercier E, Savard K, et al. 2012; Modified graded motor imagery for complex regional pain syndrome type 1 of the upper extremity in the acute phase: a patient series. Int J Rehabil Res. 35:138–45. DOI:
10.1097/MRR.0b013e3283527d29. PMID:
22436440.
22. Bade MJ, Stevens-Lapsley JE. 2011; Early high-intensity rehabilitation following total knee arthroplasty improves outcomes. J Orthop Sports Phys Ther. 41:932–41. DOI:
10.2519/jospt.2011.3734. PMID:
21979411.
23. Carlsson AM. 1983; Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain. 16:87–101. DOI:
10.1016/0304-3959(83)90088-X. PMID:
6602967.

24. Bellamy N, Buchanan WW, Goldsmith CH, Bellamy N, Goldsmith CH, Campbell J, et al. 1988; Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcome following total hip or knee arthroplasty in osteoarthritis. J Orthop Rheumatol. 1:95–108.
25. Norkin CC, White DJ. 2016. Measurement of joint motion: a guide to goniometry. 5th ed. F.A. Davis Company;DOI:
10.1016/s0031-9406(05)66908-8.
26. Daloia LMT, Leonardi-Figueiredo MM, Martinez EZ, Mattiello-Sverzut AC. 2018; Isometric muscle strength in children and adolescents using Handheld dynamometry: reliability and normative data for the Brazilian population. Braz J Phys Ther. 22:474–83. DOI:
10.1016/j.bjpt.2018.04.006. PMID:
29802034. PMCID:
PMC6235825.

28. Bek J, Humphries S, Poliakoff E, Brady N. 2022; Mental rotation of hands and objects in ageing and Parkinson's disease: differentiating motor imagery and visuospatial ability. Exp Brain Res. 240:1991–2004. DOI:
10.1007/s00221-022-06389-5. PMID:
35680657. PMCID:
PMC9288383.

29. Beauchet O, Annweiler C, Assal F, Bridenbaugh S, Herrmann FR, Kressig RW, et al. 2010; Imagined Timed Up & Go test: a new tool to assess higher-level gait and balance disorders in older adults? J Neurol Sci. 294:102–6. DOI:
10.1016/j.jns.2010.03.021. PMID:
20444477.

30. Dilek B, Ayhan C, Yakut Y. 2020; Reliability and validity of the Turkish version of the movement imagery questionnaire-3: its cultural adaptation and psychometric properties. Neurol Sci Neurophysiol. 37:221–7. DOI:
10.4103/NSN.NSN_30_20. PMID:
b6aee2cd2e244ac4abefcc0cb98c333e.

31. Pelletier R, Higgins J, Bourbonnais D. 2018; Laterality recognition of images, motor performance, and aspects related to pain in participants with and without wrist/hand disorders: an observational cross-sectional study. Musculoskelet Sci Pract. 35:18–24. DOI:
10.1016/j.msksp.2018.01.010. PMID:
29427866.

32. Sullivan MJ, Bishop SR, Pivik J. 1995; The pain catastrophizing scale: development and validation. Psychol Assess. 7:524–32. DOI:
10.1037/1040-3590.7.4.524.

33. Süren M, Okan I, Gökbakan AM, Kaya Z, Erkorkmaz U, Arici S, et al. 2014; Factors associated with the pain catastrophizing scale and validation in a sample of the Turkish population. Turk J Med Sci. 44:104–8. DOI:
10.3906/sag-1206-67. PMID:
25558568.

34. Mayer TG, Neblett R, Cohen H, Howard KJ, Choi YH, Williams MJ, et al. 2012; The development and psychometric validation of the central sensitization inventory. Pain Pract. 12:276–85. DOI:
10.1111/j.1533-2500.2011.00493.x. PMID:
21951710. PMCID:
PMC3248986.

35. Düzce Keleş E, Birtane M, Ekuklu G, Kılınçer C, Çalıyurt O, Taştekin N, et al. 2021; Validity and reliability of the Turkish version of the central sensitization inventory. Arch Rheumatol. 36:518–26. DOI:
10.46497/ArchRheumatol.2022.8665. PMID:
35382371. PMCID:
PMC8957757.

36. Tunca Yılmaz Ö, Yakut Y, Uygur F, Uluğ N. 2011; Turkish version of the Tampa Scale for Kinesiophobia and its test-retest reliability. Fizyoter Rehabil. 22:44–9. Turkish.
37. Fritz CO, Morris PE, Richler JJ. 2012; Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 141:2–18. Erratum in: J Exp Psychol Gen 2012; 141: 30. DOI:
10.1037/a0024338. PMID:
21823805.

38. Toms AD, Mandalia V, Haigh R, Hopwood B. 2009; The management of patients with painful total knee replacement. J Bone Joint Surg Br. 91:143–50. DOI:
10.1302/0301-620X.91B2.20995. PMID:
19190044.

39. Lewis GN, Parker RS, Sharma S, Rice DA, McNair PJ. 2018; Structural brain alterations before and after total knee arthroplasty: a longitudinal assessment. Pain Med. 19:2166–76. DOI:
10.1093/pm/pny108. PMID:
29917139.

41. Gurudut P, Godse AN. 2022; Effectiveness of graded motor imagery in subjects with frozen shoulder: a pilot randomized controlled trial. Korean J Pain. 35:152–9. DOI:
10.3344/kjp.2022.35.2.152. PMID:
35354678. PMCID:
PMC8977197.

42. Yap BWD, Lim ECW. 2019; The effects of motor imagery on pain and range of motion in musculoskeletal disorders: a systematic review using meta-analysis. Clin J Pain. 35:87–99. DOI:
10.1097/AJP.0000000000000648. PMID:
30222613.

43. Skoffer B, Dalgas U, Mechlenburg I, Søballe K, Maribo T. 2015; Functional performance is associated with both knee extensor and flexor muscle strength in patients scheduled for total knee arthroplasty: a cross-sectional study. J Rehabil Med. 47:454–9. DOI:
10.2340/16501977-1940. PMID:
25678417.

47. Breckenridge JD, Ginn KA, Wallwork SB, McAuley JH. 2019; Do people with chronic musculoskeletal pain have impaired motor imagery? A meta-analytical systematic review of the left/right judgment task. J Pain. 20:119–32. DOI:
10.1016/j.jpain.2018.07.004. PMID:
30098404.

48. Anderson B, Meyster V. 2018; Treatment of a patient with central pain sensitization using graded motor imagery principles: a case report. J Chiropr Med. 17:264–7. DOI:
10.1016/j.jcm.2018.05.004. PMID:
30846919. PMCID:
PMC6391225.

49. Louw A, Puentedura EJ, Reese D, Parker P, Miller T, Mintken PE. 2017; Immediate effects of mirror therapy in patients with shoulder pain and decreased range of motion. Arch Phys Med Rehabil. 98:1941–7. DOI:
10.1016/j.apmr.2017.03.031. PMID:
28483657.

50. Araya-Quintanilla F, Gutiérrez-Espinoza H, Jesús Muñoz-Yanez M, Rubio-Oyarzún D, Cavero-Redondo I, Martínez-Vizcaino V, et al. 2020; The short-term effect of graded motor imagery on the affective components of pain in subjects with chronic shoulder pain syndrome: open-label single-arm prospective study. Pain Med. 21:2496–501. DOI:
10.1093/pm/pnz364. PMID:
32003812.
