1. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013; 13:321–335. PMID:
23618829.
2. Kamada N, Núñez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology. 2014; 146:1477–1488. PMID:
24503128.
3. Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013; 14:685–690. PMID:
23778796.
4. Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous
Clostridium species. Science. 2011; 331:337–341. PMID:
21205640.
5. Lewis SJ, Heaton KW. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut. 1997; 41:245–251. PMID:
9301506.
6. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504:446–450. PMID:
24226770.
7. Gérard P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens. 2013; 3:14–24. PMID:
25437605.
8. Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2015; 12:77–87. PMID:
25385227.
9. Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012; 9:565–576. PMID:
22890113.
10. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015; 12:205–217. PMID:
25732745.
11. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012; 9:599–608. PMID:
22907164.
12. Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol. 2010; 8:564–577. PMID:
20622892.
13. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007; 104:13780–13785. PMID:
17699621.
14. Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012; 482:179–185. PMID:
22297845.
15. Wright DP, Rosendale DI, Robertson AM. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol Lett. 2000; 190:73–79. PMID:
10981693.
16. Lucke K, Miehlke S, Jacobs E, Schuppler M. Prevalence of
Bacteroides and
Prevotella spp. in ulcerative colitis. J Med Microbiol. 2006; 55:617–624. PMID:
16585651.
17. Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011; 145:745–757. PMID:
21565393.
18. Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013; 123:700–711. PMID:
23281400.
19. Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998; 66:5224–5231. PMID:
9784526.
20. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993; 75:253–261. PMID:
8402910.
21. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005; 128:891–906. PMID:
15825073.
22. Bohn E, Bechtold O, Zahir N, et al. Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: common patterns and bacteria strain specific signatures. Inflamm Bowel Dis. 2006; 12:853–862. PMID:
16954804.
23. Kim SC, Tonkonogy SL, Karrasch T, Jobin C, Sartor RB. Dualassociation of gnotobiotic IL-10-/- mice with 2 nonpathogenic commensal bacteria induces aggressive pancolitis. Inflamm Bowel Dis. 2007; 13:1457–1466. PMID:
17763473.
24. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun. 1999; 67:2969–2974. PMID:
10338507.
25. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012; 4:1095–1119. PMID:
23016134.
26. DeVoss J, Diehl L. Murine models of inflammatory bowel disease (IBD): challenges of modeling human disease. Toxicol Pathol. 2014; 42:99–110. PMID:
24231829.
27. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in
Il10-/- mice. Nature. 2012; 487:104–108. PMID:
22722865.
28. Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008; 6:441–454. PMID:
18461075.
29. Rowan F, Docherty NG, Murphy M, Murphy B, Calvin Coffey J, O'Connell PR. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010; 53:1530–1536. PMID:
20940602.
30. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J. 2012; 6:1848–1857. PMID:
22495068.
31. Hentges DJ, Maier BR, Burton GC, Flynn MA, Tsutakawa RK. Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res. 1977; 37:568–571. PMID:
832279.
32. Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014; 158:1000–1010. PMID:
25171403.
33. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006; 81:1462–1471. PMID:
17120402.
34. Cosnes J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best Pract Res Clin Gastroenterol. 2004; 18:481–496. PMID:
15157822.
35. Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012; 13:R79. DOI:
10.1186/gb-2012-13-9-r79. PMID:
23013615.
36. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010; 105:2687–2692. PMID:
20940708.
37. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012; 130:e794–e803. PMID:
23008454.
38. Mylonaki M, Langmead L, Pantes A, Johnson F, Rampton DS. Enteric infection in relapse of inflammatory bowel disease: importance of microbiological examination of stool. Eur J Gastroenterol Hepatol. 2004; 16:775–778. PMID:
15256979.
39. Schubert AM, Sinani H, Schloss PD. Antibiotic-Induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against
Clostridium difficile. MBio. 2015; 6:e00974–e00915. DOI:
10.1128/mBio.00974-15. PMID:
26173701.
40. Rupnik M, Wilcox MH, Gerding DN.
Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009; 7:526–536. PMID:
19528959.
41. Musa S, Thomson S, Cowan M, Rahman T.
Clostridium difficile infection and inflammatory bowel disease. Scand J Gastroenterol. 2010; 45:261–272. PMID:
20025557.
42. Rodemann JF, Dubberke ER, Reske KA, Seo da H, Stone CD. Incidence of
Clostridium difficile infection in inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007; 5:339–344. PMID:
17368233.
43. Issa M, Vijayapal A, Graham MB, et al. Impact of
Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol. 2007; 5:345–351. PMID:
17368234.
44. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012; 488:621–626. PMID:
22914093.
45. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, et al. Antibioticinduced shifts in the mouse gut microbiome and metabolome increase susceptibility to
Clostridium difficile infection. Nat Commun. 2014; 5:3114. DOI:
10.1038/ncomms4114. PMID:
24445449.
46. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for
Clostridium difficile spores. J Bacteriol. 2008; 190:2505–2512. PMID:
18245298.
47. Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to
Clostridium difficile. Nature. 2015; 517:205–208. PMID:
25337874.
48. Kruis W, Kalek HD, Stellaard F, Paumgartner G. Altered fecal bile acid pattern in patients with inflammatory bowel disease. Digestion. 1986; 35:189–198. PMID:
3817328.
49. Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013; 62:531–539. PMID:
22993202.
50. Cao Y, Shen J, Ran ZH. Association between
Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract. 2014; 2014:872725. DOI:
10.1155/2014/872725. PMID:
24799893.
51. Sokol H, Pigneur B, Watterlot L, et al.
Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105:16731–16736. PMID:
18936492.
52. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005; 55:74–108. PMID:
15761078.
53. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011; 343:d6617. DOI:
10.1136/bmj.d6617. PMID:
22074852.
54. Akin H, Tözün N. Diet, microbiota, and colorectal cancer. J Clin Gastroenterol. 2014; 48(Suppl 1):S67–S69. PMID:
25291132.
55. Oostindjer M, Alexander J, Amdam GV, et al. The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci. 2014; 97:583–596. PMID:
24769880.
56. Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013; 98:111–120. PMID:
23719549.
57. Gill CI, Rowland IR. Diet and cancer: assessing the risk. Br J Nutr. 2002; 88(Suppl 1):S73–S87. PMID:
12215186.
58. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011; 17:1519–1528. PMID:
21472114.
59. Sears CL.
Enterotoxigenic Bacteroides fragilis : a rogue among symbiotes. Clin Microbiol Rev. 2009; 22:349–369. PMID:
19366918.
60. Rhee KJ, Wu S, Wu X, et al. Induction of persistent colitis by a human commensal, enterotoxigenic
Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun. 2009; 77:1708–1718. PMID:
19188353.
61. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009; 15:1016–1022. PMID:
19701202.
62. Toprak NU, Yagci A, Gulluoglu BM, et al. A possible role of
Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect. 2006; 12:782–786. PMID:
16842574.
63. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayréde JP.
Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010; 107:11537–11542. PMID:
20534522.
64. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012; 338:120–123. PMID:
22903521.
65. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer. 2009; 125:171–180. PMID:
19350627.
66. Vassallo G, Mirijello A, Ferrulli A, et al. Review article: Alcohol and gut microbiota - the possible role of gut microbiota modulation in the treatment of alcoholic liver disease. Aliment Pharmacol Ther. 2015; 41:917–927. PMID:
25809237.
67. Mutlu EA, Gillevet PM, Rangwala H, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol. 2012; 302:G966–G978. PMID:
22241860.
68. Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011; 53:96–105. PMID:
21254165.
69. Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors Determining Colorectal Cancer: The Role of the Intestinal Microbiota. Front Oncol. 2015; 5:220. PMID:
26528432.
70. Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006; 72:1027–1033. PMID:
16461645.
71. Makivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010; 103:227–234. PMID:
19703328.
72. Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010; 5:e10667. DOI:
10.1371/journal.pone.0010667. PMID:
20498852.
74. Kapatral V, Anderson I, Ivanova N, et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol. 2002; 184:2005–2018. PMID:
11889109.
75. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW.
Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013; 14:195–206. PMID:
23954158.
76. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464:59–65. PMID:
20203603.
77. Catassi C, Kryszak D, Bhatti B, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med. 2010; 42:530–538. PMID:
20868314.
78. Cenit MC, Olivares M, Codoñer-Franch P, Sanz Y. Intestinal microbiota and celiac disease: cause, consequence or coevolution? Nutrients. 2015; 7:6900–6923. PMID:
26287240.
79. Di Cagno R, De Angelis M, De Pasquale I, et al. Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011; 11:219. DOI:
10.1186/1471-2180-11-219. PMID:
21970810.
80. Sánchez E, Donat E, Ribes-Koninckx C, Fernández-Murga ML, Sanz Y. Duodenal-mucosal bacteria associated with celiac disease in children. Appl Environ Microbiol. 2013; 79:5472–5479. PMID:
23835180.
81. Wacklin P, Laurikka P, Lindfors K, et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol. 2014; 109:1933–1941. PMID:
25403367.
82. Combs MR. Lewis blood group system review. Immunohematology. 2009; 25:112–118. PMID:
20406017.
83. Parmar AS, Alakulppi N, Paavola-Sakki P, et al. Association study of FUT2 (rs601338) with celiac disease and inflammatory bowel disease in the Finnish population. Tissue Antigens. 2012; 80:488–493. PMID:
23075394.
84. Tong M, McHardy I, Ruegger P, et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohns disease risk polymorphism. ISME J. 2014; 8:2193–2206. PMID:
24781901.
85. Wacklin P, Tuimala J, Nikkilä J, et al. Faecal microbiota composition in adults is associated with the
FUT2 gene determining the secretor status. PLoS One. 2014; 9:e94863. PMID:
24733310.
86. Lopez P, Gonzalez-Rodriguez I, Gueimonde M, Margolles A, Suarez A. Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS One. 2011; 6:e24776. DOI:
10.1371/journal.pone.0024776. PMID:
21966367.
87. Hurd EA, Domino SE. Increased susceptibility of secretor factor gene
Fut2-null mice to experimental vaginal candidiasis. Infect Immun. 2004; 72:4279–4281. PMID:
15213174.
88. Nieuwenhuizen WF, Pieters RH, Knippels LM, Jansen MC, Koppelman SJ. Is Candida albicans a trigger in the onset of coeliac disease? Lancet. 2003; 361:2152–2154. PMID:
12826451.
89. Mårild K, Ye W, Lebwohl B, et al. Antibiotic exposure and the development of coeliac disease: a nationwide case-control study. BMC Gastroenterol. 2013; 13:109. DOI:
10.1186/1471-230X-13-109. PMID:
23834758.
90. Galipeau HJ, McCarville JL, Huebener S, et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol. 2015; 185:2969–2982. PMID:
26456581.
91. Akobeng AK, Ramanan AV, Buchan I, Heller RF. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child. 2006; 91:39–43. PMID:
16287899.
92. Peters U, Schneeweiss S, Trautwein EA, Erbersdobler HF. A case-control study of the effect of infant feeding on celiac disease. Ann Nutr Metab. 2001; 45:135–142. PMID:
11463995.
93. Fälth-Magnusson K, Franzen L, Jansson G, Laurin P, Stenhammar L. Infant feeding history shows distinct differences between Swedish celiac and reference children. Pediatr Allergy Immunol. 1996; 7:1–5. PMID:
8792377.
94. Olivares M, Albrecht S, De Palma G, et al. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur J Nutr. 2015; 54:119–128. PMID:
24700375.
95. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006; 130:1480–1491. PMID:
16678561.
96. Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014; 11:497–505. PMID:
24751910.
97. Öhman L, Törnblom H, Simrén M. Crosstalk at the mucosal border: importance of the gut microenvironment in IBS. Nat Rev Gastroenterol Hepatol. 2015; 12:36–49. PMID:
25446728.
98. Jeffery IB, O'Toole PW, Öhman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012; 61:997–1006. PMID:
22180058.
99. Crouzet L, Gaultier E, Del'Homme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil. 2013; 25:e272–e282. PMID:
23433203.
100. Kim G, Deepinder F, Morales W, et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012; 57:3213–3218. PMID:
22573345.
101. Dridi B, Raoult D, Drancourt M. Archaea as emerging organisms in complex human microbiomes. Anaerobe. 2011; 17:56–63. PMID:
21420503.
102. DuPont AW. Postinfectious irritable bowel syndrome. Clin Infect Dis. 2008; 46:594–599. PMID:
18205536.
103. Connor BA. Sequelae of traveler's diarrhea: focus on postinfectious irritable bowel syndrome. Clin Infect Dis. 2005; 41(Suppl 8):S577–S586. PMID:
16267722.
104. Beatty JK, Bhargava A, Buret AG. Post-infectious irritable bowel syndrome: mechanistic insights into chronic disturbances following enteric infection. World J Gastroenterol. 2014; 20:3976–3985. PMID:
24744587.
105. Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol. 1998; 10:59–62. PMID:
9512954.
106. Villarreal AA, Aberger FJ, Benrud R, Gundrum JD. Use of broad-spectrum antibiotics and the development of irritable bowel syndrome. WMJ. 2012; 111:17–20. PMID:
22533211.
107. Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011; 23:473–480. PMID:
21856139.
108. de Roest RH, Dobbs BR, Chapman BA, et al. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: a prospective study. Int J Clin Pract. 2013; 67:895–903. PMID:
23701141.
109. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 2015; 64:93–100. PMID:
25016597.
110. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012; 9:88–96. PMID:
22183182.
111. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent
Clostridium difficile. N Engl J Med. 2013; 368:407–415. PMID:
23323867.
112. Hourigan SK, Chen LA, Grigoryan Z, et al. Microbiome changes associated with sustained eradication of
Clostridium difficile after single faecal microbiota transplantation in children with and without inflammatory bowel disease. Aliment Pharmacol Ther. 2015; 42:741–752. PMID:
26198180.
113. Kahouli I, Tomaro-Duchesneau C, Prakash S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol. 2013; 62:1107–1123. PMID:
23558140.
114. Gianotti L, Morelli L, Galbiati F, et al. A randomized doubleblind trial on perioperative administration of probiotics in colorectal cancer patients. World J Gastroenterol. 2010; 16:167–175. PMID:
20066735.
115. Ishikawa H, Akedo I, Otani T, et al. Randomized trial of dietary fiber and
Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer. 2005; 116:762–767. PMID:
15828052.