2. Vasan RS, Xanthakis V, Lyass A, Andersson C, Tsao C, Cheng S, et al. 2018; Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades. JACC Cardiovasc Imaging. 11:1–11. DOI:
10.1016/j.jcmg.2017.08.007. PMID:
28917679. PMCID:
PMC5756128.

4. Daw P, Wood GER, Harrison A, Doherty PJ, Veldhuijzen van Zanten JJCS, Dalal HM, et al. 2022; Barriers and facilitators to implementation of a home-based cardiac rehabilitation programme for patients with heart failure in the NHS: a mixed-methods study. BMJ Open. 12:e060221. DOI:
10.1136/bmjopen-2021-060221. PMID:
35831041. PMCID:
PMC9280226.

5. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. 2017; Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 70:2476–86. DOI:
10.1016/j.jacc.2017.08.074. PMID:
29141781.
6. Bergamasco A, Luyet-Déruaz A, Gollop ND, Moride Y, Qiao Q. 2022; Epidemiology of asymptomatic pre-heart failure: a systematic review. Curr Heart Fail Rep. 19:146–56. DOI:
10.1007/s11897-022-00542-5. PMID:
35355204. PMCID:
PMC9177493.

7. Toth PP, Gauthier D. 2021; Heart failure with preserved ejection fraction: strategies for disease management and emerging therapeutic approaches. Postgrad Med. 133:125–39. DOI:
10.1080/00325481.2020.1842620. PMID:
33283589.

8. Berezin AE, Berezin AA. 2022; Point-of-care heart failure platform: where are we now and where are we going to? Expert Rev Cardiovasc Ther. 20:419–29. DOI:
10.1080/14779072.2022.2080657. PMID:
35588730.

9. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, et al. 2021; 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 42:3599–726. DOI:
10.1093/eurheartj/ehab368. PMID:
34447992.
10. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022; 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation. 145:e895–e1032. DOI:
10.1161/CIR.0000000000001073.
11. Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. 2017; Novel biomarkers of heart failure. Adv Clin Chem. 79:93–152. DOI:
10.1016/bs.acc.2016.09.002. PMID:
28212715.

12. Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. 2022; Cardiovascular biomarkers: lessons of the past and prospects for the future. Int J Mol Sci. 23:5680. DOI:
10.3390/ijms23105680. PMID:
35628490. PMCID:
PMC9143441.

13. Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. 2021; Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: endorsed by the Canadian Heart Failure Society, Heart Failure Association of India. Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 23:352–80. DOI:
10.1002/ejhf.2115. PMID:
33605000.

14. Upadhya B, Kitzman DW. 2020; Heart failure with preserved ejection fraction: new approaches to diagnosis and management. Clin Cardiol. 43:145–55. DOI:
10.1002/clc.23321. PMID:
31880340. PMCID:
PMC7021648.

15. Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CS, Cowie MR, et al. 2014; Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 64:2281–93. DOI:
10.1016/j.jacc.2014.08.036. PMID:
25456761. PMCID:
PMC4254505.
16. Sartipy U, Dahlström U, Fu M, Lund LH. 2017; Atrial fibrillation in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Fail. 5:565–74. DOI:
10.1016/j.jchf.2017.05.001. PMID:
28711451.

17. Méndez-Bailón M, Lorenzo-Villalba N, Jiménez-García R, Hernández-Barrera V, de Miguel-Yanes JM, de Miguel-Diez J, et al. 2022; Clinical characteristics, management, and in-hospital mortality in patients with heart failure with reduced ejection fraction according to sex and the presence of type 2 diabetes mellitus. J Clin Med. 11:1030. DOI:
10.3390/jcm11041030. PMID:
35207300. PMCID:
PMC8878152.

18. Swaraj S, Kozor R, Arnott C, Di Bartolo BA, A Figtree G. 2021; Heart Failure with Reduced Ejection Fraction-Does Sex Matter? Curr Heart Fail Rep. 18:345–52. DOI:
10.1007/s11897-021-00533-y. PMID:
34778933. PMCID:
PMC8616864.

19. Wilcox JE, Fang JC, Margulies KB, Mann DL. 2020; Heart failure with recovered left ventricular ejection fraction: JACC scientific expert panel. J Am Coll Cardiol. 76:719–34. DOI:
10.1016/j.jacc.2020.05.075. PMID:
32762907.
20. Kapłon-Cieślicka A, Benson L, Chioncel O, Crespo-Leiro MG, Coats AJS, Anker SD, et al. 2022; A comprehensive characterization of acute heart failure with preserved versus mildly reduced versus reduced ejection fraction - insights from the ESC-HFA EORP Heart Failure Long-Term Registry. Eur J Heart Fail. 24:335–50. DOI:
10.1002/ejhf.2408. PMID:
34962044.
21. Burnett H, Earley A, Voors AA, Senni M, McMurray JJ, Deschaseaux C, et al. 2017; Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction: A network meta-analysis. Circ Heart Fail. 10:e003529. DOI:
10.1161/CIRCHEARTFAILURE.116.003529. PMID:
28087688. PMCID:
PMC5265698.

22. Piek A, Du W, de Boer RA, Silljé HHW. 2018; Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci. 55:246–63. DOI:
10.1080/10408363.2018.1460576. PMID:
29663841.

23. Nakagawa Y, Nishikimi T, Kuwahara K. 2019; Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides. 111:18–25. DOI:
10.1016/j.peptides.2018.05.012. PMID:
29859763.

24. Volpe M, Carnovali M, Mastromarino V. 2016; The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 130:57–77. DOI:
10.1042/CS20150469. PMID:
26637405. PMCID:
PMC5233571.

25. Homar V, Mirosevic S, Svab I, Lainscak M. 2021; Natriuretic peptides for heart failure screening in nursing homes: a systematic review. Heart Fail Rev. 26:1131–40. DOI:
10.1007/s10741-020-09944-w. PMID:
32200491.

26. Gohar A, Rutten FH, den Ruijter H, Kelder JC, von Haehling S, Anker SD, et al. 2019; Mid-regional pro-atrial natriuretic peptide for the early detection of non-acute heart failure. Eur J Heart Fail. 21:1219–27. DOI:
10.1002/ejhf.1495. PMID:
31209992.

27. Chen Y, Wen Z, Peng L, Liu X, Luo Y, Wu B, et al. Diagnostic value of MR-proANP for heart failure in patients with acute dyspnea: a meta-analysis. 2020; Acta Cardiol. 75:68–74. DOI:
10.1080/00015385.2018.1550887. PMID:
30735473.

28. Mueller C, McDonald K, de Boer RA, Maisel A, Cleland JGF, Kozhuharov N, et al. 2019; Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail. 21:715–31. DOI:
10.1002/ejhf.1494. PMID:
31222929.

29. Gaborit FS, Kistorp C, Kümler T, Hassager C, Tønder N, Iversen K, et al. 2020; Diagnostic utility of MR-proANP and NT-proBNP in elderly outpatients with a high risk of heart failure: the Copenhagen heart failure risk study. Biomarkers. 25:248–59. DOI:
10.1080/1354750X.2020.1732466. PMID:
32126847.

30. Han ZJ, Wu XD, Cheng JJ, Zhao SD, Gao MZ, Huang HY, et al. 2015; Diagnostic accuracy of natriuretic peptides for heart failure in patients with pleural effusion: A systematic review and updated meta-analysis. PLoS One. 10:e0134376. DOI:
10.1371/journal.pone.0134376. PMID:
26244664. PMCID:
PMC4526570.

31. Tanase DM, Radu S, Al Shurbaji S, Baroi GL, Florida Costea C, Turliuc MD, et al. 2019; Natriuretic peptides in heart failure with preserved left ventricular ejection fraction: from molecular evidences to clinical implications. Int J Mol Sci. 20:2629. DOI:
10.3390/ijms20112629. PMID:
31142058. PMCID:
PMC6600439.

32. D'Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M. 2017; Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail. 19:710–7. DOI:
10.1002/ejhf.799. PMID:
28326642.
33. Dini FL, Bajraktari G, Zara C, Mumoli N, Rosa GM. 2018; Optimizing management of heart failure by using echo and natriuretic peptides in the outpatient unit. Adv Exp Med Biol. 1067:145–59. DOI:
10.1007/5584_2017_137. PMID:
29374825.

34. Israr MZ, Salzano A, Yazaki Y, Voors AA, Ouwerkerk W, Anker SD, et al. 2020; Implications of serial measurements of natriuretic peptides in heart failure: insights from BioStat-CHF. Eur J Heart Fail. 22:1486–90. DOI:
10.1002/ejhf.1951. PMID:
32666670.
35. Felker GM, Anstrom KJ, Adams KF, Ezekowitz JA, Fiuzat M, Houston-Miller N, et al. 2017; Effect of natriuretic peptide-guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: A randomized clinical trial. JAMA. 318:713–20. DOI:
10.1001/jama.2017.10565. PMID:
28829876. PMCID:
PMC5605776.

36. Zhang J, Pellicori P, Pan D, Dierckx R, Clark AL, Cleland JGF. 2018; Dynamic risk stratification using serial measurements of plasma concentrations of natriuretic peptides in patients with heart failure. Int J Cardiol. 269:196–200. DOI:
10.1016/j.ijcard.2018.06.070. PMID:
30001941.

37. Dini FL, Carluccio E, Montecucco F, Rosa GM, Fontanive P. Combining echo and natriuretic peptides to guide heart failure care in the outpatient setting: A position paper. Eur J Clin Invest. 2017; 47:DOI:
10.1111/eci.12846. PMID:
29044493.

38. Werhahn SM, Becker C, Mende M, Haarmann H, Nolte K, Laufs U, et al. 2022; NT-proBNP as a marker for atrial fibrillation and heart failure in four observational outpatient trials. ESC Heart Fail. 9:100–9. DOI:
10.1002/ehf2.13703. PMID:
34850596. PMCID:
PMC8788004.

39. Griffin EA, Wonderling D, Ludman AJ, Al-Mohammad A, Cowie MR, Hardman SMC, et al. 2017; Cost-effectiveness analysis of natriuretic peptide testing and specialist management in patients with suspected acute heart failure. Value Health. 20:1025–33. DOI:
10.1016/j.jval.2017.05.007. PMID:
28964433.

40. Mohiuddin S, Reeves B, Pufulete M, Maishman R, Dayer M, Macleod J, et al. 2016; Model-based cost-effectiveness analysis of B-type natriuretic peptide-guided care in patients with heart failure. BMJ Open. 6:e014010. DOI:
10.1136/bmjopen-2016-014010. PMID:
28031211. PMCID:
PMC5223729.

41. Jarolim P. 2015; High sensitivity cardiac troponin assays in the clinical laboratories. Clin Chem Lab Med. 53:635–52. DOI:
10.1515/cclm-2014-0565. PMID:
25252753.

42. Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. 2020; The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020:2018035. DOI:
10.1155/2020/2018035. PMID:
32016113. PMCID:
PMC6988690.

44. Nagarajan V, Hernandez AV, Tang WH. 2012; Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart. 98:1778–86. DOI:
10.1136/heartjnl-2012-301779. PMID:
23118345.

45. Aimo A, Januzzi JL Jr, Vergaro G, Ripoli A, Latini R, Masson S, et al. 2019; High-sensitivity troponin T, NT-proBNP and glomerular filtration rate: A multimarker strategy for risk stratification in chronic heart failure. Int J Cardiol. 277:166–72. DOI:
10.1016/j.ijcard.2018.10.079. PMID:
30416028.

46. Packer M, Januzzi JL, Ferreira JP, Anker SD, Butler J, Filippatos G, et al. 2021; Concentration-dependent clinical and prognostic importance of high-sensitivity cardiac troponin T in heart failure and a reduced ejection fraction and the influence of empagliflozin: the EMPEROR-Reduced trial. Eur J Heart Fail. 23:1529–38. DOI:
10.1002/ejhf.2256. PMID:
34053177. PMCID:
PMC9291909.
47. Aimo A, Januzzi JL Jr, Vergaro G, Ripoli A, Latini R, Masson S, et al. 2018; Prognostic value of high-sensitivity troponin T in chronic heart failure: an individual patient data meta-analysis. Circulation. 137:286–97. DOI:
10.1161/CIRCULATIONAHA.117.031560. PMID:
29335288.

49. Vergaro G, Gentile F, Aimo A, Januzzi JL Jr, Richards AM, Lam CSP, et al. 2022; Circulating levels and prognostic cut-offs of sST2, hs-cTnT, and NT-proBNP in women vs. men with chronic heart failure. ESC Heart Fail. 9:2084–95. DOI:
10.1002/ehf2.13883. PMID:
35510529. PMCID:
PMC9288762.

51. Young JM, Pickering JW, George PM, Aldous SJ, Wallace J, Frampton CM, et al. 2016; Heart fatty acid binding protein and cardiac troponin: development of an optimal rule-out strategy for acute myocardial infarction. BMC Emerg Med. 16:34. DOI:
10.1186/s12873-016-0089-y. PMID:
27577952. PMCID:
PMC5006323.

52. Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, et al. 2020; Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: what do we know so far? J Clin Med. 9:164. DOI:
10.3390/jcm9010164. PMID:
31936148. PMCID:
PMC7019786.

53. Simeunovic D, Odanovic N, Pljesa-Ercegovac M, Radic T, Radovanovic S, Coric V, et al. 2019; Glutathione transferase P1 polymorphism might be a risk determinant in heart failure. Dis Markers. 2019:6984845. DOI:
10.1155/2019/6984845. PMID:
31275451. PMCID:
PMC6589253.

54. Andrukhova O, Salama M, Rosenhek R, Gmeiner M, Perkmann T, Steindl J, et al. 2012; Serum glutathione S-transferase P1 1 in prediction of cardiac function. J Card Fail. 18:253–61. DOI:
10.1016/j.cardfail.2011.11.003. PMID:
22385947. PMCID:
PMC3314906.

55. Bošnjak I, Selthofer-Relatić K, Včev A. 2015; Prognostic value of galectin-3 in patients with heart failure. Dis Markers. 2015:690205. DOI:
10.1155/2015/690205. PMID:
25960597. PMCID:
PMC4415488.

56. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, et al. 2008; Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 172:288–98. DOI:
10.2353/ajpath.2008.070726. PMID:
18202187. PMCID:
PMC2312353.

57. Reifenberg K, Lehr HA, Torzewski M, Steige G, Wiese E, Küpper I, et al. 2007; Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am J Pathol. 171:463–72. DOI:
10.2353/ajpath.2007.060906. PMID:
17556594. PMCID:
PMC1934522.
59. McCullough PA, Olobatoke A, Vanhecke TE. 2011; Galectin-3: a novel blood test for the evaluation and management of patients with heart failure. Rev Cardiovasc Med. 12:200–10. DOI:
10.3909/ricm0624. PMID:
22249510.

60. Bansal N, Zelnick LR, Soliman EZ, Anderson A, Christenson R, DeFilippi C, et al. 2021; Change in cardiac biomarkers and risk of incident heart failure and atrial fibrillation in CKD: the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis. 77:907–19. DOI:
10.1053/j.ajkd.2020.09.021. PMID:
33309861. PMCID:
PMC8903040.

61. de Boer RA, Lok DJ, Jaarsma T, van der Meer P, Voors AA, Hillege HL, et al. 2011; Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 43:60–8. DOI:
10.3109/07853890.2010.538080. PMID:
21189092. PMCID:
PMC3028573.

62. Motiwala SR, Szymonifka J, Belcher A, Weiner RB, Baggish AL, Sluss P, et al. 2013; Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 15:1157–63. DOI:
10.1093/eurjhf/hft075. PMID:
23666680.

63. Pascual-Figal DA, Lax A, Perez-Martinez MT, del Carmen Asensio-Lopez M, Sanchez-Mas J. GREAT Network. 2016; Clinical relevance of sST2 in cardiac diseases. Clin Chem Lab Med. 54:29–35. DOI:
10.1515/cclm-2015-0074. PMID:
26544104.

64. Lotierzo M, Dupuy AM, Kalmanovich E, Roubille F, Cristol JP. 2020; sST2 as a value-added biomarker in heart failure. Clin Chim Acta. 501:120–30. DOI:
10.1016/j.cca.2019.10.029. PMID:
31678574.

65. Vergaro G, Aimo A, Januzzi JL Jr, Richards AM, Lam CSP, Latini R, et al. 2022; Cardiac biomarkers retain prognostic significance in patients with heart failure and chronic obstructive pulmonary disease. J Cardiovasc Med. 23:28–36. DOI:
10.2459/JCM.0000000000001281. PMID:
34839321.
66. Emdin M, Aimo A, Vergaro G, Bayes-Genis A, Lupón J, Latini R, et al. 2018; sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J Am Coll Cardiol. 72:2309–20. DOI:
10.1016/j.jacc.2018.08.2165. PMID:
30384887.
67. Huang A, Qi X, Hou W, Qi Y, Zhao N, Liu K. 2018; Prognostic value of sST2 and NT-proBNP at admission in heart failure with preserved, mid-ranged and reduced ejection fraction. Acta Cardiol. 73:41–8. DOI:
10.1080/00015385.2017.1325617. PMID:
28944719.

68. Aimo A, Januzzi JL Jr, Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, et al. 2019; Clinical and prognostic significance of sST2 in heart failure: JACC review topic of the week. J Am Coll Cardiol. 74:2193–203. DOI:
10.1016/j.jacc.2019.08.1039. PMID:
31648713.
69. Nikolov A, Popovski N. 2022; Extracellular matrix in heart disease: focus on circulating collagen type I and III derived peptides as biomarkers of myocardial fibrosis and their potential in the prognosis of heart failure: A concise review. Metabolites. 12:297. DOI:
10.3390/metabo12040297. PMID:
35448484. PMCID:
PMC9025448.

70. Flevari P, Theodorakis G, Leftheriotis D, Kroupis C, Kolokathis F, Dima K, et al. 2012; Serum markers of deranged myocardial collagen turnover: their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am Heart J. 164:530–7. DOI:
10.1016/j.ahj.2012.07.006. PMID:
23067911.

71. He T, Melgarejo JD, Clark AL, Yu YL, Thijs L, Díez J, et al. 2021; Serum and urinary biomarkers of collagen type-I turnover predict prognosis in patients with heart failure. Clin Transl Med. 11:e267. DOI:
10.1002/ctm2.267.

72. Tziakas DN, Chalikias GK, Stakos D, Chatzikyriakou SV, Papazoglou D, Mitrousi K, et al. 2012; Independent and additive prognostic ability of serum carboxy-terminal telopeptide of collagen type-I in heart failure patients: a multi-marker approach with high-negative predictive value to rule out long-term adverse events. Eur J Prev Cardiol. 19:62–71. DOI:
10.1097/HJR.0b013e32833ace76. PMID:
20479644.

73. Chatzikyriakou SV, Tziakas DN, Chalikias GK, Stakos D, Papazoglou D, Lantzouraki A, et al. 2012; Circulating levels of a biomarker of collagen metabolism are associated with health-related quality of life in patients with chronic heart failure. Qual Life Res. 21:143–53. DOI:
10.1007/s11136-011-9932-5. PMID:
21598062.

74. Duprez DA, Gross MD, Kizer JR, Ix JH, Hundley WG, Jacobs DR Jr. 2018; Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (multi-ethnic study of atherosclerosis). J Am Heart Assoc. 7:e007885. DOI:
10.1161/JAHA.117.007885. PMID:
29475876. PMCID:
PMC5866330.

75. Berezin AE. Preedy V, editor. Bone-related proteins as markers in vascular remodeling. Biomarkers in bone disease. Biomarkers in disease: methods, discoveries and applications. Dordrecht: Springer;2015.

76. Berezin AE. 2016; Diabetes mellitus related biomarker: the predictive role of growth-differentiation factor-15. Diabetes Metab Syndr. 10:S154–7. DOI:
10.1016/j.dsx.2015.09.016. PMID:
26482961.

77. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. 2017; The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 23:1215–9. DOI:
10.1038/nm.4393. PMID:
28846098.

78. Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. 2021; GDF15 and cardiac cells: current concepts and new insights. Int J Mol Sci. 22:8889. DOI:
10.3390/ijms22168889. PMID:
34445593. PMCID:
PMC8396208.

79. Li N, Feng Q, Yu F, Zhou J, Guo X. 2022; Plasma growth differentiation factor-15 in patients with "lone" atrial fibrillation. J Clin Lab Anal. 36:e24373. DOI:
10.1002/jcla.24373.

80. Matusik PT, Małecka B, Lelakowski J, Undas A. 2020; Association of NT-proBNP and GDF-15 with markers of a prothrombotic state in patients with atrial fibrillation off anticoagulation. Clin Res Cardiol. 109:426–34. DOI:
10.1007/s00392-019-01522-x. PMID:
31280356. PMCID:
PMC7098929.

81. Wang Z, Yang F, Ma M, Bao Q, Shen J, Ye F, et al. 2020; The impact of growth differentiation factor 15 on the risk of cardiovascular diseases: two-sample Mendelian randomization study. BMC Cardiovasc Disord. 20:462. DOI:
10.1186/s12872-020-01744-2. PMID:
33115406. PMCID:
PMC7594331.

82. Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. 2017; Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther. 31:593–608. DOI:
10.1007/s10557-017-6752-z. PMID:
28956198.

83. Sanders-van Wijk S, Tromp J, Beussink-Nelson L, Hage C, Svedlund S, Saraste A, et al. 2020; Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction: results from the PROMIS-HFpEF study. Circulation. 142:2029–44. DOI:
10.1161/CIRCULATIONAHA.120.045810. PMID:
33034202. PMCID:
PMC7686082.

84. van Veldhuisen DJ, Ruilope LM, Maisel AS, Damman K. 2016; Biomarkers of renal injury and function: diagnostic, prognostic and therapeutic implications in heart failure. Eur Heart J. 37:2577–85. DOI:
10.1093/eurheartj/ehv588. PMID:
26543046.

87. Gegenhuber A, Struck J, Dieplinger B, Poelz W, Pacher R, Morgenthaler NG, et al. 2007; Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and copeptin to predict 1-year mortality in patients with acute destabilized heart failure. J Card Fail. 13:42–9. DOI:
10.1016/j.cardfail.2006.09.004. PMID:
17339002.

88. Lubrano V, Balzan S. 2020; Role of oxidative stress-related biomarkers in heart failure: galectin 3, α1-antitrypsin and LOX-1: new therapeutic perspective? Mol Cell Biochem. 464:143–52. DOI:
10.1007/s11010-019-03656-y. PMID:
31782085.

89. Berezin AE, Berezin AA, Lichtenauer M. 2021; Myokines and heart failure: challenging role in adverse cardiac remodeling, myopathy, and clinical outcomes. Dis Markers. 2021:6644631. DOI:
10.1155/2021/6644631. PMID:
33520013. PMCID:
PMC7819753.

90. Berezin AA, Fushtey IM, Berezin AE. 2022; The effect of SGLT2 inhibitor dapagliflozin on serum levels of apelin in T2DM patients with heart failure. Biomedicines. 10:1751. DOI:
10.3390/biomedicines10071751. PMID:
35885056. PMCID:
PMC9313111.

91. Berezin AA, Lichtenauer M, Boxhammer E, Fushtey IM, Berezin AE. 2022; Serum levels of irisin predict cumulative clinical outcomes in heart failure patients with type 2 diabetes mellitus. Front Physiol. 13:922775. DOI:
10.3389/fphys.2022.922775. PMID:
35651870. PMCID:
PMC9149086.

92. Chirinos JA, Orlenko A, Zhao L, Basso MD, Cvijic ME, Li Z, et al. 2020; Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 75:1281–95. DOI:
10.1016/j.jacc.2019.12.069. PMID:
32192654. PMCID:
PMC7147356.
93. Bayes-Genis A, Richards AM, Maisel AS, Mueller C, Ky B. 2015; Multimarker testing with ST2 in chronic heart failure. Am J Cardiol. 115(S7):76B–80B. DOI:
10.1016/j.amjcard.2015.01.045. PMID:
25697916.

94. Topf A, Mirna M, Ohnewein B, Jirak P, Kopp K, Fejzic D, et al. 2020; The diagnostic and therapeutic value of multimarker analysis in heart failure. An approach to biomarker-targeted therapy. Front Cardiovasc Med. 7:579567. DOI:
10.3389/fcvm.2020.579567. PMID:
33344515. PMCID:
PMC7746655.

95. Aldweib N, Elia EG, Brainard SB, Wu F, Sleeper LA, Rodriquez C, et al. 2022; Serial cardiac biomarker assessment in adults with congenital heart disease hospitalized for decompensated heart failure☆. Int J Cardiol Congenit Heart Dis. 7:100336. DOI:
10.1016/j.ijcchd.2022.100336. PMID:
35463849. PMCID:
PMC9024322.

96. Berezin AE. 2022; Cell-free long noncoding RNAs as predictive biomarkers for cardiovascular diseases. Int J Cardiol. 359:115–7. DOI:
10.1016/j.ijcard.2022.04.036. PMID:
35439586.
