1.Feldman EL., Callaghan BC., Pop-Busui R., Zochodne DW., Wright DE., Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019. 5:42.
2.Sloan G., Selvarajah D., Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 2021. 17:400–20.
3.Jordan MI., Mitchell TM. Machine learning: trends, per-spectives, and prospects. Science. 2015. 349:255–60.
4.Miotto R., Wang F., Wang S., Jiang X., Dudley JT. Deep learning for healthcare: review, opportunities and chal-lenges. Brief Bioinform. 2018. 19:1236–46.
5.Shin DY., Lee B., Yoo WS., Park JW., Hyun JK. Prediction of diabetic sensorimotor polyneuropathy using machine learning techniques. J Clin Med. 2021. 10:4576.
6.Ryu YH., Kim SY., Kim TU., Lee SJ., Park SJ., Jung HY, et al. Prediction of poststroke depression based on the out-comes of machine learning algorithms. J Clin Med. 2022. 11:2264.
7.Kim S., Shin DY., Kim T., Lee S., Hyun JK., Park SM. En-hanced recognition of amputated wrist and hand move-ments by deep learning method using multimodal fusion of electromyography and electroencephalography. Sensors (Basel). 2022. 22:680.
8.Ahsan MM., Luna SA., Siddique Z. Machine-learning-based disease diagnosis: a comprehensive review. Healthcare (Basel). 2022. 10:541.
9.Puttagunta M., Ravi S. Medical image analysis based on deep learning approach. Multimed Tools Appl. 2021. 80:24365–98.
10.Bzdok D., Altman N., Krzywinski M. Statistics versus machine learning. Nat Methods. 2018. 15:233–4.
11.Smith H., Sweeting M., Morris T., Crowther MJ. A scoping methodological review of simulation studies comparing statistical and machine learning approaches to risk prediction for time-to-event data. Diagn Progn Res. 2022. 6:10.
12.Gulshan V., Peng L., Coram M., Stumpe MC., Wu D., Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopa-thy in retinal fundus photographs. JAMA. 2016. 316:2402–10.
14.Muehlematter UJ., Daniore P., Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. Lancet Digit Health. 2021. 3:e195–203.
15.Aisu N., Miyake M., Takeshita T., Akiyama M., Kawasaki R., Kashiwagi K, et al. Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: a systematic review. PLOS Digit Health. 2022. 1:e0000001.
16.Konam S. Where did IBM go wrong with Watson Health? Available from:. https://qz.com/2129025/where-did-ibm-go-wrong-with-watson-health. (updated 2022 Mar 2).
17.Kiseleva A., Kotzinos D., De Hert P. Transparency of AI in healthcare as a multilayered system of accountabilities: between legal requirements and technical limitations. Front Artif Intell. 2022. 5:879603.
18.Naik N., Hameed BMZ., Shetty DK., Swain D., Shah M., Paul R, et al. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg. 2022. 9:862322.
19.Kazemi M., Moghimbeigi A., Kiani J., Mahjub H., Faradmal J. Diabetic peripheral neuropathy class prediction by multi-category support vector machine model: a cross-sectional study. Epidemiol Health. 2016. 38:e2016011.
20.Dagliati A., Marini S., Sacchi L., Cogni G., Teliti M., Tibollo V, et al. Machine learning methods to predict diabetes complications. J Diabetes Sci Technol. 2018. 12:295–302.
21.Fan Y., Long E., Cai L., Cao Q., Wu X., Tong R. Machine learning approaches to predict risks of diabetic complications and poor glycemic control in nonadherent type 2 diabetes. Front Pharmacol. 2021. 12:665951.
22.Maeda-Gutiérrez V., Galván-Tejada CE., Cruz M., Val-ladares-Salgado A., Galván-Tejada JI., Gamboa-Rosales H, et al. Distal symmetric polyneuropathy identification in type 2 diabetes subjects: a random forest approach. Healthcare (Basel). 2021. 9:138.
23.Dorfman E. How much data is required for machine learning? Available from:. https://postindustria.com/how-much-data-is-required-for-machine-learning/. (updated 2022 Mar 25).
24.Tesfaye S., Boulton AJ., Dyck PJ., Freeman R., Horowitz M., Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010. 33:2285–93. Erratum in: Diabetes Care 2010;33):2725.
25.Dyck PJ., Overland CJ., Low PA., Litchy WJ., Davies JL., Dyck PJ, et al. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve. 2010. 42:157–64.