2. Zabell APR, Lytle FE, Julian RK. 2016; A proposal to improve calibration and outlier detection in high-throughput mass spectrometry. Clin Mass Spectrom. 2:25–33. DOI:
10.1016/j.clinms.2016.12.003.

3. Raposo F. 2016; Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. Trends Analyt Chem. 77:167–85. DOI:
10.1016/j.trac.2015.12.006.

4. Cortese M, Gigliobianco MR, Magnoni F, Censi R, Di Martino PD. 2020; Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography-mass spectrometry technique: A tutorial review. Molecules. 25:E3047. DOI:
10.3390/molecules25133047. PMID:
32635301. PMCID:
PMC7412464.

5. CLSI. 2014. Liquid chromatography-mass spectrometry methods. CLSI C62-A. Clinical and Laboratory Standards Institute;Wayne, PA: DOI:
10.1016/j.trac.2015.12.006.
6. Grant RP, Rappold BA. Rifai N, Horvath AR, editors. 2018. Development and validation of small molecule analytes by liquid chromatography-tandem mass spectrometry. Principles and applications of clinical mass spectrometry: small molecules, peptides, and pathogens. Amsterdam: Elsevier Science;p. 115–79. DOI:
10.1016/b978-0-12-816063-3.00005-0.

7. CLSI. 2018. Interference testing in clinical chemistry; approved guideline, CLSI Ep07-ED3. Clinical and Laboratory Standards Institute;Wayne, PA: DOI:
10.1016/b978-0-12-816063-3.00005-0.
8. CLSI. 2020. Evaluation of the linearity of quantitative measurement procedures: a statistical approach: approved guideline, CLSI Ep06-ED2. Clinical and Laboratory Standards Institute;Wayne, PA: DOI:
10.1016/b978-0-12-816063-3.00005-0.
9. Liu G, Ji QC, Arnold ME. 2010; Identifying, evaluating, and controlling bioanalytical risks resulting from nonuniform matrix ion suppression/enhancement and nonlinear liquid chromatography−mass spectrometry assay response. Anal Chem. 82:9671–7. DOI:
10.1021/ac1013018. PMID:
21038862.

10. Matuszewski BK, Constanzer ML, Chavez-Eng CM. 2003; Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC−MS/MS. Anal Chem. 75:3019–30. DOI:
10.1021/ac020361s. PMID:
12964746.

12. Hewavitharana AK. 2011; Matrix matching in liquid chromatography-mass spectrometry with stable isotope labelled internal standards-is it necessary? J Chromatogr A. 1218:359–61. DOI:
10.1016/j.chroma.2010.11.047. PMID:
21159347.

13. Nilsson LB, Skansen P. 2012; Investigation of absolute and relative response for three different liquid chromatography/tandem mass spectrometry systems; the impact of ionization and detection saturation. Rapid Commun Mass Spectrom. 26:1399–406. DOI:
10.1002/rcm.6239. PMID:
22592983.

14. Alladio E, Amante E, Bozzolino C, Seganti F, Salomone A, Vincenti M, et al. 2020; Effective validation of chromatographic analytical methods: the illustrative case of androgenic steroids. Talanta. 215:120867. DOI:
10.1016/j.talanta.2020.120867. PMID:
32312473.

15. Shi G. 2003; Application of co-eluting structural analog internal standards for expanded linear dynamic range in liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom. 17:202–6. DOI:
10.1002/rcm.897. PMID:
12539184.

16. Visconti G, Olesti E, González-Ruiz V, Glauser G, Tonoli D, Lescuyer P, et al. 2022; Internal calibration as an emerging approach for endogenous analyte quantification: application to steroids. Talanta. 240:123149. DOI:
10.1016/j.talanta.2021.123149. PMID:
34954616.

17. Wang S, Cyronak M, Yang E. 2007; Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J Pharm Biomed Anal. 43:701–7. DOI:
10.1016/j.jpba.2006.08.010. PMID:
16959461.
18. Lindegardh N, Annerberg A, White NJ, Day NP. 2008; Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci. 862:227–36. DOI:
10.1016/j.jchromb.2007.12.011. PMID:
18191623.
19. Yuan L, Zhang D, Jemal M, Aubry AF. 2012; Systematic evaluation of the root cause of non-linearity in liquid chromatography/tandem mass spectrometry bioanalytical assays and strategy to predict and extend the linear standard curve range. Rapid Commun Mass Spectrom. 26:1465–74. DOI:
10.1002/rcm.6252. PMID:
22592990.

20. Jiang F, Liu Q, Li Q, Zhang S, Qu X, Zhu J, et al. 2020; Signal drift in liquid chromatography tandem mass spectrometry and its internal standard calibration strategy for quantitative analysis. Anal Chem. 92:7690–8. DOI:
10.1021/acs.analchem.0c00633. PMID:
32392405.

21. Boyd RK, Basic C, Bethem RA. Trace quantitative analysis by mass spectrometry. Hoboken: John Wiley & Sons. 2011; 373–459.

22. Rule GS, Clark ZD, Yue B, Rockwood AL. 2013; Correction for isotopic interferences between analyte and internal standard in quantitative mass spectrometry by a nonlinear calibration function. Anal Chem. 85:3879–85. DOI:
10.1021/ac303096w. PMID:
23480307.

23. Fu Y, Li W, Flarakos J. 2019; Recommendations and best practices for calibration curves in quantitative LC-MS bioanalysis. Bioanalysis. 11:1375–7. DOI:
10.4155/bio-2019-0149. PMID:
31490108.

24. Huang C, Ammerman J, Connolly P, de Lisio P, Wright D. 2012; Error estimates on normal least squares linear regression with replicate injection of calibration standards. Bioanalysis. 4:1979–87. DOI:
10.4155/bio.12.170. PMID:
22946914.

25. Peters FT, Maurer HH. 2007; Systematic comparison of bias and precision data obtained with multiple-point and one-point calibration in six validated multianalyte assays for quantification of drugs in human plasma. Anal Chem. 79:4967–76. DOI:
10.1021/ac070054s. PMID:
17518444.

26. Tan A, Awaiye K, Trabelsi F. 2014; Impact of calibrator concentrations and their distribution on accuracy of quadratic regression for liquid chromatography-mass spectrometry bioanalysis. Anal Chim Acta. 815:33–41. DOI:
10.1016/j.aca.2014.01.036. PMID:
24560370.

27. Musuku A, Tan A, Awaiye K, Trabelsi F. 2013; Comparison of two-concentration with multi-concentration linear regressions: retrospective data analysis of multiple regulated LC-MS bioanalytical projects. J Chromatogr B Analyt Technol Biomed Life Sci. 934:117–23. DOI:
10.1016/j.jchromb.2013.07.007. PMID:
23917407.

28. Gu H, Liu G, Wang J, Aubry AF, Arnold ME. 2014; Selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays and impacts of using incorrect weighting factors on curve stability, data quality, and assay performance. Anal Chem. 86:8959–66. DOI:
10.1021/ac5018265. PMID:
25157966.

29. Brister-Smith A, Young JA, Saitman A. 2021; A 24-hour extended calibration strategy for quantitating tacrolimus concentrations by liquid chromatography-tandem mass spectrometry. J Appl Lab Med. 6:1293–8. DOI:
10.1093/jalm/jfab048. PMID:
34136903.

30. Mansilha C, Melo A, Rebelo H, Ferreira IM, Pinho O, Domingues V, et al. 2010; Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes. J Chromatogr A. 1217:6681–91. DOI:
10.1016/j.chroma.2010.05.005. PMID:
20553685.

31. da Silva CP, Emídio ES, de Marchi MR. 2015; Method validation using weighted linear regression models for quantification of UV filters in water samples. Talanta. 131:221–7. DOI:
10.1016/j.talanta.2014.07.041. PMID:
25281096.

32. Lavagnini I, Magno F. 2007; A statistical overview on univariate calibration, inverse regression, and detection limits: application to gas chromatography/mass spectrometry technique. Mass Spectrom Rev. 26:1–18. DOI:
10.1002/mas.20100. PMID:
16788893.

33. Desharnais B, Camirand-Lemyre F, Mireault P, Skinner CD. 2017; Procedure for the selection and validation of a calibration model II-theoretical basis. J Anal Toxicol. 41:269–76. DOI:
10.1093/jat/bkx002. PMID:
28158619.

34. Galitzine C, Egertson JD, Abbatiello S, Henderson CM, Pino LK, MacCoss M, et al. 2018; Nonlinear regression improves accuracy of characterization of multiplexed mass spectrometric assays. Mol Cell Proteomics. 17:913–24. DOI:
10.1074/mcp.RA117.000322. PMID:
29438992. PMCID:
PMC5930407.

35. Lavagnini I, Favaro G, Magno F. 2004; Non-linear and non-constant variance calibration curves in analysis of volatile organic compounds for testing of water by the purge-and-trap method coupled with gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 18:1383–91. DOI:
10.1002/rcm.1498. PMID:
15174195.

36. Sayago A, Asuero AG. 2004; Fitting straight lines with replicated observations by linear regression: Part II. Testing for homogeneity of variances. Crit Rev Anal Chem. 34:133–46. DOI:
10.1080/10408340490888599.

37. Pitarch-Motellón J, Fabregat-Cabello N, Le Goff C, Roig-Navarro AF, Sancho-Llopis JV, Cavalier E. 2019; Comparison of isotope pattern deconvolution and calibration curve quantification methods for the determination of estrone and 17β-estradiol in human serum. J Pharm Biomed Anal. 171:164–70. DOI:
10.1016/j.jpba.2019.04.013. PMID:
31003006.

38. Olson MT, Breaud A, Harlan R, Emezienna N, Schools S, Yergey AL, et al. 2013; Alternative calibration strategies for the clinical laboratory: application to nortriptyline therapeutic drug monitoring. Clin Chem. 59:920–7. DOI:
10.1373/clinchem.2012.194639. PMID:
23426427. PMCID:
PMC4162085.

39. Couchman L, Belsey SL, Handley SA, Flanagan RJ. 2013; A novel approach to quantitative LC-MS/MS: therapeutic drug monitoring of clozapine and norclozapine using isotopic internal calibration. Anal Bioanal Chem. 405:9455–66. DOI:
10.1007/s00216-013-7361-8. PMID:
24091736.

40. Rappold BA, Hoofnagle AN. 2017; Bias due to isotopic incorporation in both relative and absolute protein quantitation with carbon-13 and nitrogen-15 labeled peptides. Clin Mass Spectrom. 3:13–21. DOI:
10.1016/j.clinms.2017.04.002.

41. Hoffman MA, Schmeling M, Dahlin JL, Bevins NJ, Cooper DP, Jarolim P, et al. 2020; Calibrating from within: multipoint internal calibration of a quantitative mass spectrometric assay of serum methotrexate. Clin Chem. 66:474–82. DOI:
10.1093/clinchem/hvaa003. PMID:
32057077.

42. Rappold BA. 2022; Review of the use of liquid chromatography-tandem mass spectrometry in clinical laboratories: Part I-Development. Ann Lab Med. 42:121–40. DOI:
10.3343/alm.2022.42.2.121. PMID:
34635606. PMCID:
PMC8548246.

43. Rappold BA. 2022; Review of the use of liquid chromatography-tandem mass spectrometry in clinical laboratories: Part II-Operations. Ann Lab Med. 42:531–57. DOI:
10.3343/alm.2022.42.5.531. PMID:
35470272. PMCID:
PMC9057814.
