1.Roubenoff R. Sarcopenic obesity: the confluence of two epidemics. Obes Res. 2004. 12:887–8.
2.Mokdad AH., Bowman BA., Ford ES., Vinicor F., Marks JS., Koplan JP. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001. 286:1195–200.
3.Kim TN., Choi KM. The implications of sarcopenia and sarcopenic obesity on cardiometabolic disease. J Cell Bio-chem. 2015. 116:1171–8.
4.Nam GE., Kim YH., Han K., Jung JH., Rhee EJ., Lee WY. Obesity fact sheet in Korea, 2020: prevalence of obesity by obesity class from 2009 to 2018. J Obes Metab Syndr. 2021. 30:141–8.
5.Nam GE., Kim YH., Han K., Jung JH., Rhee EJ., Lee SS. Obesity fact sheet in Korea, 2019: prevalence of obesity and abdominal obesity from 2009 to 2018 and social factors. J Obes Metab Syndr. 2020. 29:124–32.
6.Zamboni M., Mazzali G., Zoico E., Harris TB., Meigs JB., Di Francesco V. Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes (Lond). 2005. 29:1011–29.
7.Zamboni M., Mazzali G., Fantin F., Rossi A., Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis. 2008. 18:388–95.
8.Kim TN., Yang SJ., Yoo HJ., Lim KI., Kang HJ., Song W. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes (Lond). 2009. 33:885–92.
9.Kim TN., Park MS., Lim KI., Yang SJ., Yoo HJ., Kang HJ. Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Res Clin Pract. 2011. 93:285–91.
10.Prado CM., Wells JC., Smith SR., Stephan BC., Siervo M. Sarcopenic obesity: a critical appraisal of the current evi-dence. Clin Nutr. 2012. 31:583–601.
11.Johnson Stoklossa CA., Sharma AM., Forhan M., Siervo M., Padwal RS., Prado CM. Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J Nutr Metab. 2017. 2017:7307618.
12.Kalinkovich A., Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mech-anism of the pathogenesis. Ageing Res Rev. 2017. 35:200–21.
13.Barbat-Artigas S., Pion CH., Leduc-Gaudet JP., Rolland Y., Aubertin-Leheudre M. Exploring the role of muscle mass, obesity, and age in the relationship between muscle qual-ity and physical function. J Am Med Dir Assoc. 2014. 15:303.e13–20.
14.Tian S., Xu Y. Association of sarcopenic obesity with the risk of all-cause mortality: a meta-analysis of prospective cohort studies. Geriatr Gerontol Int. 2016. 16:155–66.
15.Newman AB., Haggerty CL., Goodpaster B., Harris T., Kritchevsky S., Nevitt M. Strength and muscle quali-ty in a well-functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2003. 51:323–30.
16.Wang ZM., Pierson RN Jr., Heymsfield SB. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 1992. 56:19–28.
17.Rico H., Revilla M., Villa LF., Alvarez de Buergo M. Age-related differences in total and regional bone mass: a cross-sectional study with DXA in 429 normal women. Osteoporos Int. 1993. 3:154–9.
18.Buckley DC., Kudsk KA., Rose BS., Fatzinger P., Koetting CA., Schlatter M. Anthropometric and computerized to-mographic measurements of lower extremity lean body mass. J Am Diet Assoc. 1987. 87:196–9.
19.Heymsfield SB., McManus C., Smith J., Stevens V., Nixon DW. Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. Am J Clin Nutr. 1982. 36:680–90.
20.van der Kooy K., Seidell JC. Techniques for the measurement of visceral fat: a practical guide. Int J Obes Relat Metab Disord. 1993. 17:187–96.
21.Plourde G. The role of radiologic methods in assessing body composition and related metabolic parameters. Nutr Rev. 1997. 55:289–96.
22.Adams JE. Single and dual energy X-ray absorptiometry. Eur Radiol. 1997. 7(Suppl 2):S20–31.
23.Andreoli A., Scalzo G., Masala S., Tarantino U., Guglielmi G. Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med. 2009. 114:286–300.
24.Albanese CV., Diessel E., Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003. 6:75–85.
25.Cawthon PM. Assessment of lean mass and physical per-formance in sarcopenia. J Clin Densitom. 2015. 18:467–71.
26.Kendler DL., Borges JL., Fielding RA., Itabashi A., Krueger D., Mulligan K. The official positions of The International Society for Clinical Densitometry: indications of use and reporting of DXA for body composition. J Clin Densitom. 2013. 16:496–507.
27.Petak S., Barbu CG., Yu EW., Fielding R., Mulligan K., Sab-owitz B. The Official Positions of the International Society for Clinical Densitometry: body composition analysis reporting. J Clin Densitom. 2013. 16:508–19.
28.Kim KM., Jang HC., Lim S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016. 31:643–50.
29.Cruz-Jentoft AJ., Baeyens JP., Bauer JM., Boirie Y., Cederholm T., Landi F. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010. 39:412–23.
30.Cruz-Jentoft AJ., Bahat G., Bauer J., Boirie Y., Bruyèere O., Cederholm T. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019. 48:16–31. Erratum in: Age Ageing 2019;48:601.
31.Chen LK., Woo J., Assantachai P., Auyeung TW., Chou MY., Iijima K. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020. 21:300–7.e2.
32.Baker JF., Long J., Leonard MB., Harris T., Delmonico MJ., Santanasto A. Estimation of skeletal muscle mass rel-ative to adiposity improves prediction of physical perfor-mance and incident disability. J Gerontol A Biol Sci Med Sci. 2018. 73:946–52.
33.Kim TN., Park MS., Kim YJ., Lee EJ., Kim MK., Kim JM. Association of low muscle mass and combined low muscle mass and visceral obesity with low cardiorespira-tory fitness. PLoS One. 2014. 9:e100118.
34.Shea JL., King MT., Yi Y., Gulliver W., Sun G. Body fat per-centage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutr Metab Cardiovasc Dis. 2012. 22:741–7.
35.Carey DG., Jenkins AB., Campbell LV., Freund J., Chisholm DJ. Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes. 1996. 45:633–8.
36.Brochu M., Starling RD., Tchernof A., Matthews DE., Gar-cia-Rubi E., Poehlman ET. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women. J Clin Endocrinol Metab. 2000. 85:2378–84.
37.Bazzocchi A., Ponti F., Albisinni U., Battista G., Guglielmi G. DXA: technical aspects and application. Eur J Radiol. 2016. 85:1481–92.
38.Karpe F., Pinnick KE. Biology of upper-body and low-er-body adipose tissue-link to whole-body phenotypes. Nat Rev Endocrinol. 2015. 11:90–100.
39.Müller MJ., Lagerpusch M., Enderle J., Schautz B., Heller M., Bosy-Westphal A. Beyond the body mass index: tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obes Rev. 2012. 13(Suppl 2):6–13.
40.Micklesfield LK., Goedecke JH., Punyanitya M., Wilson KE., Kelly TL. Dual-energy X-ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity (Silver Spring). 2012. 20:1109–14.
41.Kuk JL., Katzmarzyk PT., Nichaman MZ., Church TS., Blair SN., Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 2006. 14:336–41.
42.Kim TN., Park MS., Ryu JY., Choi HY., Hong HC., Yoo HJ. Impact of visceral fat on skeletal muscle mass and vice versa in a prospective cohort study: the Korean Sarcopenic Obesity Study (KSOS). PLoS One. 2014. 9:e115407.