Spinopelvic parameters
Recently, it has been recognized that the orientation of the lumbosacral pelvic junction plays a critical role in the overall alignment of the spine, and that sagittal spinopelvic balance is made from spinal and pelvic parameters. Many studies have reported spinopelvic parameters in normal and low back pain populations
5,
7,
9,
16,
17,
19). PI is an important anatomic parameter that describes the anatomic configuration of the pelvis and greatly influences the sagittal configuration of the spine
4,
10,
11). It is relatively constant during childhood. Thereafter, PI increases significantly during adolescence until reaching its maximum value in adulthood
10). It is not affected by posture or the pelvic position, and is considered to be invariable at the end of growth
2). PI represents the algebraic sum of the SS and the PT : PI=SS+PT. Thus, if we consider the PI of any subject, when the sacral slope increases, the pelvic tilt decreases, and vice versa. It is commonly reported as a compensatory mechanism : when the trunk inclines anteriorly (e.g., age related change, sagittal imbalance, loss of lordosis, increase of kyphosis) a subject will try his/her best to maintain an economic posture and keep the spine balanced. Also, the morphology of the pelvis as quantified by PI is a strong determinant of the spatial position of the pelvis in a standing position : as the PI increases, so does the SS, PT or both. Values and correlations of spinopelvic parameters for the normal population have been well established. Legaye et al.
11) and Vaz et al.
19) have demonstrated a correlation between PI and LL in normal subjects; a low PI is usually associated with a low lumbar lordosis, whereas a high PI is usually associated with a high lumbar lordosis. Also, the correlation between LL and SS has been reported in normal populations; LL increases linearly with the SS
18).
Degenerative spondylolisthesis versus isthmic spondylolisthesis
In the present study, patients with DSPL had a significant greater PI (59°) than the asymptomatic control populations (49°) (
Table 2). It suggests that the shape of the pelvis, characterized by PI, is a predisposing factor for DSPL. In an asymptomatic normal population, it was demonstrated that patients with high PI had a high LL, and those with low PI had a low LL
11,
19). But, we observed that patients with DSPL demonstrated a low LL (42°), a low SS (34°), a high PT (24°) (pelvic retroversion), and a high SVA (57 mm) (anterior sagittal unbalance), compared with the control group. Also, analyzing between the high PI and the normal PI subgroup in the DSPL group, the SS and PT of the high PI subgroup was significantly greater than that of the normal PI subgroup, as a greater PI has a greater SS, PT. In spite of high PI, there was no significant difference in LL between high and normal PI subgroups. Additionally, the SVA (72 mm) of the high PI subgroup was greater than that (42 mm) of the normal PI subgroup, but, there was no significant difference (
Table 3). For the analysis between the high SVA and normal SVA subgroup in the DSPL group, the PT (27°) of the high SVA subgroup was significantly greater than that (22°) of the normal SVA subgroup; the LL (37°) of the high SVA subgroup is significantly lower than that (48°) of the normal SVA subgroup (
Table 4). It seems that the sagittal imbalance populations (high SVA subgroup) processed pelvic retroversion (increase of PT) as a compensatory mechanism, but did not overcome sagittal imbalance owing to the loss of lumbar lordosis (
Fig. 3). These characteristics of spinopelvic parameters for DSPL can be described as the following phases. Initially, the patients with high PI would have had a high lordosis and high sacral slope. A high lordosis generates a large amount of force on posterior facet joints. As time goes on, these mechanical stresses on posterior facets cause and accelerate facet arthrosis. The posterior facets arthrosis associated with a significant inclination of the sacral slope predispose slipping. The slippage progresses to disc degeneration and collapse, and results in a loss of lordosis. This loss of lordosis induces a significant anterior displacement of the C7 plumbline and center of gravity. Thereafter, as a compensatory mechanism, patients with DSPL generate a decrease of SS associated with an increase of PT (pelvic retroversion)
12) (
Fig. 3). DSPL populations characterized by a high PI can have a greater potential to compensate global sagittal imbalance than populations with a low PI. Thus, the sagittal imbalance of DSPL is not severe and/or compensated
1). But, as the loss of lumbar lordosis is even worse, sagittal imbalance can be more severe because of the limitation of compensation in pelvic retroversion.
 | Fig. 3Illustration showing the difference of sagittal spinopelvic alignment between DSPL (A) and ISPL (B). A : This illustration displays the sagittal spinopelvic alignment of DSPL. B : This illustration displays the sagittal spinopelvic alignment of ISPL. DSPL : degenerative spondylolisthesis, ISPL : isthmic spondylolisthesis, SVA : sagittal vertical axis from C7 plumb line. 
|
There have been several studies about the characteristics of spinopelvic parameters for ISPL populations. Labelle et al.
10) described that PI is significantly correlated with the degree of ISPL. Rajnics et al.
15) noted that the SS, PT and PI in ISPL populations were significantly higher than those values in the normal populations. Moreover, Hanson et al.
6) reported that as the degree of spondylolisthesis increased, the LL, PI and PT increased as well. In the present study, patients with ISPL also had a significantly greater PI (59°) than the asymptomatic control populations (49°), in the same way as DSPL. It also suggests that a high PI is a predisposing factor for ISPL. However, unlike the DSPL population, the ISPL population demonstrated a high LL (55°), a normal SS (38°), a high PT (21°), and the maintenance of a global sagittal balance within the normal range of SVA (21 mm), as compared to the control group. In an analysis between the high PI and the normal PI subgroup in the ISPL group, there were no significantly different parameters except for PT. The LL and SVA (57°, 28 mm) of the high PI subgroup was greater than those (53°, 15 mm) of the normal PI subgroup, but there were no significant differences (
Table 5). A comparison between the high SVA and normal SVA subgroup in ISPL group revealed that the high SVA subgroup, as sagittal imbalance group, was only 3 populations, most (16 populations) of ISPL populations maintained the sagittal balance. The PI and SS (76°, 48°) of the high SVA subgroup was significantly greater than those (56°, 36°) of the normal SVA subgroup (
Table 6). Generally, the ISPL group seems to maintain a sagittal balance, which can be caused by the maintenance of lumbar lordosis and is different from DSPL populations and mild pelvic retroversion (
Fig. 3).
These comparative studies with the normal population were generally concordant with the present study. But, there were few studies for these differences of spinopelvic parameters between the DSPL and ISPL population. In our analysis between the DSPL and ISPL population, there were two statistically significant parameters; LL (
p<0.05) and SVA (
p<0.001) (
Fig. 2). Based on the results of the analysis, the LL can be a considerable factor, because the SVA is a dependent variable. We can suggest that the characteristics of the spinopelvic parameters of ISPL that differ from DSPL are described as the following phases. Initially, the patients with high PI have a high lordosis and high sacral slope, which is same as DSPL. A high lordosis causes a high shear stress at the pars interarticularis, it develops spondylolysis and ISPL. To sum up, if mechanical stresses on the posterior column (pars interarticularis, facet joint) due to a high lordosis cause the defect of pars interarticularis (spondylolysis), ISPL can develop. After ISPL develops, lordosis is maintained or hyperlordosis is generated as a compensatory mechanism to maintain a global sagittal balance. Because mechanical stress is concentrated on the defect of pars interarticularis as a definite weak point, facet arthrosis and discopathy can relatively be less progressed than DSPL. In the analysis between ISPL and the control group, PT had a statistically significant difference. But, the PT of the ISPL population was less than those of the DSPL population (
Fig. 2,
Table 2). Also, mild pelvic retroversion is generated as a compensatory mechanism (
Fig. 3).
There were several limitations in this study. First, it was difficult to evaluate a statistical significance due to a small number of cases and non-age, sex matched analysis. Second, this study did not include a high grade spondylolisthesis population. Third, the thoracic kyphosis of population was not evaluated in this study. Nonetheless, the results of this study are meaningful because the differences of sagittal spinopelvic alignments between DSPL and ISPL were investigated. But, we recognize that a prospective, larger and longitudinal study is necessary to clearly establish the spinopelvic alignments of DSPL and ISPL.