1.American Diabetes Association Professional Practice Committee; American Diabetes Association Professional Practice Committee., Draznin B., Aroda VR., Bakris G., Benson G, et al. 6. Glycemic targets: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022. 45(Supple-ment_1):S83–96.
2.Korean Diabetes Association. 21 Clinical practice guide-lines for diabetes. Available from:
http://kdaguideline.com (updated 2021 Dec 1).
3.Jung HS. Clinical implications of glucose variability: chronic complications of diabetes. Endocrinol Metab (Seoul). 2015. 30:167–74.
4.Wang C., Lv L., Yang Y., Chen D., Liu G., Chen L, et al. Glucose fluctuations in subjects with normal glucose toler-ance, impaired glucose regulation and newly diagnosed type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2012. 76:810–5.
5.Guo K., Tian Q., Yang L., Zhou Z. The role of glucagon in glycemic variability in type 1 diabetes: a narrative review. Diabetes Metab Syndr Obes. 2021. 14:4865–73.
6.Miya A., Nakamura A., Handa T., Nomoto H., Kameda H., Cho KY, et al. Log-linear relationship between endoge-nous insulin secretion and glycemic variability in patients with type 2 diabetes on continuous glucose monitoring. Sci Rep. 2021. 11:9057.
7.Egi M., Bellomo R., Stachowski E., French CJ., Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006. 105:244–52.
8.Danne T., Nimri R., Battelino T., Bergenstal RM., Close KL., DeVries JH, et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017. 40:1631–40.
9.Service FJ., Molnar GD., Rosevear JW., Ackerman E., Gate-wood LC., Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970. 19:644–55.
10.Kovatchev BP. Metrics for glycaemic control- from HbA
1c to continuous glucose monitoring. Nat Rev Endocrinol. 2017. 13:425–36.
11.McDonnell CM., Donath SM., Vidmar SI., Werther GA., Cameron FJ. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther. 2005. 7:253–63.
12.Shima K., Tanaka R., Morishita S., Tarui S., Kumahara Y. Studies on the etiology of “brittle diabetes”. Relationship between diabetic instability and insulinogenic reserve. Diabetes. 1977. 26:717–25.
13.Molnar GD., Taylor WF., Ho MM. Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia. 1972. 8:342–8.
14.Bergenstal RM. Glycemic variability and diabetes complications: does it matter? Simply put, there are better glycemic markers! Diabetes Care. 2015. 38:1615–21.
15.Hirsch IB. Glycemic variability and diabetes complications: does it matter? Of course it does! Diabetes Care. 2015. 38:1610–4.
16.Monnier L., Mas E., Ginet C., Michel F., Villon L., Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006. 295:1681–7.
17.Ceriello A., Esposito K., Piconi L., Ihnat MA., Thorpe JE., Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008. 57:1349–54.
18.Siegelaar SE., Barwari T., Kulik W., Hoekstra JB., DeVries JH. No relevant relationship between glucose variability and oxidative stress in well-regulated type 2 diabetes patients. J Diabetes Sci Technol. 2011. 5:86–92.
19.Li W., Liu X., Yanoff M., Cohen S., Ye X. Cultured retinal capillary pericytes die by apoptosis after an abrupt fluctuation from high to low glucose levels: a comparative study with retinal capillary endothelial cells. Diabetologia. 1996. 39:537–47.
20.Perrott RL., North RV., Drasdo N., Ahmed KA., Owens DR. The influence of plasma glucose upon pulsatile ocular blood flow in subjects with type II diabetes mellitus. Diabetologia. 2001. 44:700–5.
21.Lu J., Ma X., Zhang L., Mo Y., Ying L., Lu W, et al. Glycemic variability assessed by continuous glucose monitoring and the risk of diabetic retinopathy in latent autoimmune diabetes of the adult and type 2 diabetes. J Diabetes Investig. 2019. 10:753–9.
22.Sartore G., Chilelli NC., Burlina S., Lapolla A. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013. 50:437–42.
23.Hietala K., Wadén J., Forsblom C., Harjutsalo V., Kytö J., Summanen P, et al. HbA
1c variability is associated with an increased risk of retinopathy requiring laser treatment in type 1 diabetes. Diabetologia. 2013. 56:737–45.
24.Park JY., Hwang JH., Kang MJ., Sim HE., Kim JS., Ko KS. Effects of glycemic variability on the progression of diabetic retinopathy among patients with type 2 diabetes. Retina. 2021. 41:1487–95.
25.Takao T., Ide T., Yanagisawa H., Kikuchi M., Kawazu S., Mat-suyama Y. The effects of fasting plasma glucose variability and time-dependent glycemic control on the long-term risk of retinopathy in type 2 diabetic patients. Diabetes Res Clin Pract. 2011. 91:e40–2.
26.Jin HY., Lee KA., Park TS. The impact of glycemic variability on diabetic peripheral neuropathy. Endocrine. 2016. 53:643–8.
27.Bragd J., Adamson U., Bäcklund LB., Lins PE., Moberg E., Oskarsson P. Can glycaemic variability, as calculated from blood glucose self-monitoring, predict the development of complications in type 1 diabetes over a decade? Diabetes Metab. 2008. 34(6 Pt 1):612–6.
28.Jun JE., Jin SM., Baek J., Oh S., Hur KY., Lee MS, et al. The association between glycemic variability and diabetic cardiovascular autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol. 2015. 14:70.
29.Cahn A., Zuker I., Eilenberg R., Uziel M., Tsadok MA., Raz I, et al. Machine learning based study of longitudinal HbA1c trends and their association with all-cause mortality: Analyses from a National Diabetes Registry. Diabetes Metab Res Rev. 2022. 38:e3485.
30.Desouza CV., Bolli GB., Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010. 33:1389–94.
31.Kilpatrick ES., Rigby AS., Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care. 2008. 31:2198–202.
32.Sugawara A., Kawai K., Motohashi S., Saito K., Kodama S., Yachi Y, et al. HbA
1c variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai Diabetes Registry 2. Diabetologia. 2012. 55:2128–31. Erratum in: Diabetologia 2013;56:2548.
33.Yang YF., Li TC., Li CI., Liu CS., Lin WY., Yang SY, et al. Visit-to-visit glucose variability predicts the development of end-stage renal disease in type 2 diabetes: 10-year fol-low-up of Taiwan diabetes study. Medicine (Baltimore). 2015. 94:e1804.
34.Kilpatrick ES., Rigby AS., Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2006. 29:1486–90.
35.Lachin JM., Genuth S., Nathan DM., Zinman B., Rutledge BN; DCCT/EDIC Research Group. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial–revisited. Diabetes. 2008. 57:995–1001.
36.Yang CP., Lin CC., Li CI., Liu CS., Lin CH., Hwang KL, et al. Fasting plasma glucose variability and HbA1c are associated with peripheral artery disease risk in type 2 diabetes. Cardiovasc Diabetol. 2020. 19:4.
37.Li CI., Cheng HM., Liu CS., Lin CH., Lin WY., Wang MC, et al. Association between glucose variation and lower extremity amputation incidence in individuals with type 2 diabetes: a nationwide retrospective cohort study. Diabetologia. 2020. 63:194–205.
38.Muggeo M., Verlato G., Bonora E., Zoppini G., Corbellini M., de Marco R. Long-term instability of fasting plasma glucose, a novel predictor of cardiovascular mortality in elderly patients with non-insulin-dependent diabetes mellitus: the Verona Diabetes Study. Circulation. 1997. 96:1750–4.
39.Esposito K., Giugliano D., Nappo F., Marfella R; Campan-ian Postprandial Hyperglycemia Study Group. Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation. 2004. 110:214–9.
40.Snell-Bergeon JK., Roman R., Rodbard D., Garg S., Maahs DM., Schauer IE, et al. Glycaemic variability is associated with coronary artery calcium in men with Type 1 diabetes: the Coronary Artery Calcification in Type 1 Diabetes study. Diabet Med. 2010. 27:1436–42.
41.Barbieri M., Rizzo MR., Marfella R., Boccardi V., Esposito A., Pansini A, et al. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis. 2013. 227:349–54.
42.Mo Y., Zhou J., Li M., Wang Y., Bao Y., Ma X, et al. Glycemic variability is associated with subclinical atherosclerosis in Chinese type 2 diabetic patients. Cardiovasc Diabetol. 2013. 12:15.
43.Liang S., Yin H., Wei C., Xie L., He H., Liu X. Glucose variability for cardiovascular risk factors in type 2 diabetes: a meta-analysis. J Diabetes Metab Disord. 2017. 16:45.
44.Su G., Mi SH., Tao H., Li Z., Yang HX., Zheng H, et al. Im-pact of admission glycemic variability, glucose, and glyco-sylated hemoglobin on major adverse cardiac events after acute myocardial infarction. Diabetes Care. 2013. 36:1026–32.
45.Wang X., Zhao X., Dorje T., Yan H., Qian J., Ge J. Glycemic variability predicts cardiovascular complications in acute myocardial infarction patients with type 2 diabetes mellitus. Int J Cardiol. 2014. 172:498–500.
46.Kilpatrick ES., Rigby AS., Atkin SL. Mean blood glucose compared with HbA
1c in the prediction of cardiovascular disease in patients with type 1 diabetes. Diabetologia. 2008. 51:365–71.
47.Siegelaar SE., Kerr L., Jacober SJ., Devries JH. A decrease in glucose variability does not reduce cardiovascular event rates in type 2 diabetic patients after acute myocardial infarction: a reanalysis of the HEART2D study. Diabetes Care. 2011. 34:855–7.
48.Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008. 36:3008–13.
49.Satya Krishna SV., Kota SK., Modi KD. Glycemic variability: clinical implications. Indian J Endocrinol Metab. 2013. 17:611–9.
50.Monnier L., Colette C. Glycemic variability: should we and can we prevent it? Diabetes Care. 2008. 31(Suppl 2):S150–4.
51.Avari P., Moscardo V., Jugnee N., Oliver N., Reddy M. Glycemic variability and hypoglycemic excursions with continuous glucose monitoring compared to intermittently scanned continuous glucose monitoring in adults with highest risk type 1 diabetes. J Diabetes Sci Technol. 2020. 14:567–74.
52.Volčanšek Š., Lunder M., Janež A. Acceptability of continuous glucose monitoring in elderly diabetes patients using multiple daily insulin injections. Diabetes Technol Ther. 2019. 21:566–74.
53.Henao-Carrillo DC., Muñoz OM., Gómez AM., Rondón M., Colón C., Chica L, et al. Reduction of glycemic variability with Degludec insulin in patients with unstable diabetes. J Clin Transl Endocrinol. 2018. 12:8–12.
54.Jang HN., Yang YS., Oh TJ., Koo BK., Lee SO., Park KS, et al. Low fasting glucose-to-estimated average glucose ratio was associated with superior response to insulin degludec/aspart compared with basal insulin in patients with type 2 diabetes. J Diabetes Investig. 2022. 13:85–93.
55.FLAT-SUGAR Trial Investigators. Glucose variability in a 26-week randomized comparison of mealtime treatment with rapid-acting insulin versus GLP-1 agonist in partic-ipants with type 2 diabetes at high cardiovascular risk. Diabetes Care. 2016. 39:973–81.
56.Lee S., Lee H., Kim Y., Kim E. Effect of DPP-IV inhibitors on glycemic variability in patients with T2DM: a systematic review and meta-analysis. Sci Rep. 2019. 9:13296.
57.Henry RR., Strange P., Zhou R., Pettus J., Shi L., Zhuplatov SB, et al. Effects of dapagliflozin on 24-hour glycemic control in patients with type 2 diabetes: a randomized controlled trial. Diabetes Technol Ther. 2018. 20:715–24.
58.Rodbard HW., Peters AL., Slee A., Cao A., Traina SB., Alba M. The effect of canagliflozin, a sodium glucose cotransporter 2 inhibitor, on glycemic end points assessed by continuous glucose monitoring and patient-reported outcomes among people with type 1 diabetes. Diabetes Care. 2017. 40:171–80.