1. Huang SH, Liu P, Mokasdar A, Hou L. 2013; Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol. 67:1191–203. DOI:
10.1007/s00170-012-4558-5.
2. Guo N, Leu MC. 2013; Additive manufacturing: technology, applications and research needs. Front Mech Eng. 8:215–43. DOI:
10.1007/s11465-013-0248-8.
3. Jockusch J, Özcan M. 2020; Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J. 39:345–54. DOI:
10.4012/dmj.2019-123. PMID:
32037387.
4. Galante R, Figueiredo-Pina CG, Serro AP. 2019; Additive manufacturing of ceramics for dental applications: A review. Dent Mater. 35:825–46. DOI:
10.1016/j.dental.2019.02.026. PMID:
30948230.
5. ASTM International. 2012. Standard terminology for additive manufacturing technologies.
6. Hull C. Apparatus for production of three-dimensional objects by stereolithography. US Patent 1986;638905.
7. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P. 2019; He Y. 3D printing of ceramics: A review. J Eur Ceram Soc. 39:661–87. DOI:
10.1016/j.jeurceramsoc.2018.11.013.
8. Stansbury JW, Idacavage MJ. 2016; 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 32:54–64. DOI:
10.1016/j.dental.2015.09.018. PMID:
26494268.
9. Infuehr R, Pucher N, Heller C, Lichtenegger H, Liska R, Schmidt V, Kuna L, Haase A, Stampfl J. 2007; Functional polymers by two-photon 3D lithography. Appl Surf Sci. 254:836–40. DOI:
10.1016/j.apsusc.2007.08.011.
10. Liska R, Cziferszky M, Inführ R, Turecek C, Fritscher C, Seidl B, Schmidt V, Kuna L, Haase A, Varga F, Lichtenegger HC, Stampfl J. 2007; Photopolymers for rapid prototyping. J Coat Technol Res. 4:505–10. DOI:
10.1007/s11998-007-9059-3.
12. Revilla-León M, Meyer MJ, Zandinejad A, Özcan M. 2020; Additive manufacturing technologies for processing zirconia in dental applications. Int J Comput Dent. 23:27–37. PMID:
32207459.
13. Revilla-León M, Meyers MJ, Zandinejad A, Özcan M. 2019; A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent. 31:51–7. DOI:
10.1111/jerd.12438. PMID:
30367716.
14. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. 2018; Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 143:172–96. DOI:
10.1016/j.compositesb.2018.02.012.
15. Strub JR, Rekow ED, Witkowski S. 2006; Computeraided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc. 137:1289–96. DOI:
10.14219/jada.archive.2006.0389. PMID:
16946436.
16. Beuer F, Schweiger J, Edelhoff D. 2008; Digital dentistry: an overview of recent developments for CAD-CAM generated restorations. Br Dent J. 204:505–11. DOI:
10.1038/sj.bdj.2008.350. PMID:
18469768.
17. Lebon N, Tapie L, Duret F, Attal JP. 2016; Understanding dental CAD-CAM for restorations-dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines. Int J Comput Dent. 19:45–62.
18. Digholkar S, Madhav VNV, Palaskar J. 2016; Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc. 16:328–34. DOI:
10.4103/0972-4052.191288. PMID:
27746595. PMCID:
PMC5062140.
19. Peng CC, Chung KH, Yau HT, Ramos V Jr. 2020; Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods. J Prosthet Dent. 123:514–22. DOI:
10.1016/j.prosdent.2019.02.024. PMID:
31353116.
20. Burns DR, Beck DA, Nelson SK. Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. 2003; A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent. 90:474–97. DOI:
10.1016/S0022-3913(03)00259-2. PMID:
14586312.
21. Park JY, Jeong ID, Lee JJ, Bae SY, Kim JH, Kim WC. 2016; In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J Prosthet Dent. 116:536–42. DOI:
10.1016/j.prosdent.2016.03.012. PMID:
27174406.
22. Reeponmaha T, Angwaravong O, Angwarawong T. 2020; Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD-CAM and conventional method. J Adv Prosthodont. 12:218–24. DOI:
10.4047/jap.2020.12.4.218. PMID:
32879712. PMCID:
PMC7449821.
23. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 2018; 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 34:192–200. DOI:
10.1016/j.dental.2017.10.003. PMID:
29110921. PMCID:
PMC5801146.
24. Scotti CK, de Amoêdo Campos Velo MM, Rizzante FAP, de Lima Nascimento TR, Mondelli RFL, Bombonatti JFS. 2020; Physical and surface properties of a 3D-printed composite resin for a digital workflow. J Prosthet Dent. 124:614.e1–e5. DOI:
10.1016/j.prosdent.2020.03.029. PMID:
32636072.
25. Jeong KW, Kim SH. 2019; Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations. J Adv Prosthodont. 11:95–104. DOI:
10.4047/jap.2019.11.2.95. PMID:
31080570. PMCID:
PMC6491361.
26. Alharbi N, Alharbi S, Cuijpers VM, Osman RB, Wismeijer D. 2018; Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res. 62:218–26. DOI:
10.1016/j.jpor.2017.09.002. PMID:
29032176.
27. Shim JS, Kim JE, Jeong SH, Choi YJ, Ryu JJ. 2020; Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent. 124:468–75. DOI:
10.1016/j.prosdent.2019.05.034. PMID:
31810611.
28. Bae EJ, Kim JH, Kim WC, Kim HY. 2014; Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering. J Adv Prosthodont. 6:266–71. DOI:
10.4047/jap.2014.6.4.266. PMID:
25177469. PMCID:
PMC4146726.
29. Kruth JP, Levy G, Klocke F, Childs THC. 2007; Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals. 56:730–59. DOI:
10.1016/j.cirp.2007.10.004.
30. Zhou Y, Li N, Yan J, Zeng Q. 2018; Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent. 120:617–23. DOI:
10.1016/j.prosdent.2017.11.015. PMID:
29627206.
31. Kajima Y, Takaichi A, Kittikundecha N, Nakamoto T, Kimura T, Nomura N, Kawasaki A, Hanawa T, Takahashi H, Wakabayashi N. 2018; Effect of heat-treatment temperature on microstructures and mechanical properties of Co-Cr-Mo alloys fabricated by selective laser melting. Mater Sci Eng A. 726:21–31. DOI:
10.1016/j.msea.2018.04.048.
32. Takaichi A, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, Migita S, Doi H, Kurosu S, Chiba A, Wakabayashi N, Igarashi Y, Hanawa T. Suyalatu. 2013; Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 21:67–76. DOI:
10.1016/j.jmbbm.2013.01.021. PMID:
23500549.
33. Meacock CG, Vilar R. 2009; Structure and properties of a biomedical Co-Cr-Mo alloy producedby laser powder microdeposition. J Laser Appl. 21:88–95. DOI:
10.2351/1.3120214.
34. Tonelli L, Fortunato A, Ceschini L. 2020; CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness. J Manufac Process. 52:106–19. DOI:
10.1016/j.jmapro.2020.01.052.
35. Yan X, Lin H, Wu Y, Bai W. 2018; Effect of two heat treatments on mechanical properties of selectivelaser-melted Co-Cr metal-ceramic alloys for application in thin removable partial dentures. J Prosthet Dent. 119:1028.e1–e6. DOI:
10.1016/j.prosdent.2018.04.002. PMID:
29980269.
36. Yan X, Xu YX, Wu Y, Lin H. 2018; Effects of heat treatment on metal-ceramic combination of selectivelaser-melted cobalt-chromium alloy. J Prosthet Dent. 120:319.e1–e6. DOI:
10.1016/j.prosdent.2018.05.012. PMID:
30097265.
37. Beaman JJ, Barlow JW, Bourell DL, Crawford RH, Marcus HL, McAlea KP. 1997. Solid Freeform Fabrication: A New Direction in Manufacturing. Springer US;NY: DOI:
10.1007/978-1-4615-6327-3.
38. Sachs E, Cima M, Williams P, Brancazio D, Cornie J. 1992; Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Manufac Sci Eng. 114:481–8. DOI:
10.1115/1.2900701.
39. Hinczewski C, Corbel S, Chartier T. 1998; Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc. 18:583–90. DOI:
10.1016/S0955-2219(97)00186-6.
41. Bertsch A, Jiguet S, Renaud P. 2003; Microfabrication of ceramic components by microstereolithography. J Micromech Microeng. 14:197–203. DOI:
10.1088/0960-1317/14/2/005.
42. Branco AC, Silva R, Santos T, Jorge H, Rodrigues AR, Fernandes R, Bandarra S, Barahona I, Matos APA, Lorenz K, Polido M, Colaço R, Serro AP, Figueiredo-Pina CG. 2020; Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater. 36:442–55. DOI:
10.1016/j.dental.2020.01.006. PMID:
32001023.
43. Baumgartner S, Gmeiner R, Schönherr JA, Stampfl J. 2020; Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications. Mater Sci Eng C Mater Biol Appl. 116:111180. DOI:
10.1016/j.msec.2020.111180. PMID:
32806296.
44. Li H, Song L, Sun J, Ma J, Shen Z. 2020; Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements. Adv Appl Ceram. 119:236–43. DOI:
10.1080/17436753.2019.1709687.
45. Harrer W, Schwentenwein M, Lube T, Danzer R. 2017; Fractography of zirconia-specimens made using additive manufacturing (LCM) technology. J Eur Ceram Soc. 37:4331–8. DOI:
10.1016/j.jeurceramsoc.2017.03.018.
46. Xing H, Zou B, Li S, Fu X. 2017; Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceram Int. 43:16340–7. DOI:
10.1016/j.ceramint.2017.09.007.
47. Johansson E, Lidström O, Johansson J, Lyckfeldt O, Adolfsson E. 2017; Influence of Resin Composition on the Defect Formation in Alumina Manufactured by Stereolithography. Materials. 10:138. DOI:
10.3390/ma10020138. PMID:
28772496. PMCID:
PMC5459215.
48. Marsico C, Øilo M, Kutsch J, Kauf M, Arola D. 2020; Vat Polymerization-Printed Partially Stabilized Zirconia: Mechanical Properties, Reliability and Structural defects. Addit Manuf. 36:101450. DOI:
10.1016/j.addma.2020.101450. PMID:
32793425. PMCID:
PMC7418863.
49. O'Masta MR, Stonkevitch E, Porter KA, Bui PP, Eckel ZC, Schaedler TA. 2020; Additive manufacturing of polymer-derived ceramic matrix composites. J Am Ceram Soc. 103:6712–23. DOI:
10.1111/jace.17275.
50. Chartier T, Badev A, Abouliatim Y, Lebaudy P, Lecamp L. 2012; Stereolithography process: influence of the rheology of silica suspensions and of the medium on polymerization kinetics-cured depth and width. J Eur Ceram Soc. 32:1625–34. DOI:
10.1016/j.jeurceramsoc.2012.01.010.
51. Chartier T, Dupas C, Lasgorceix M, Brie J, Champion E, Delhote N, Chaput C. 2014; Additive manufacturing to produce complex 3D ceramic parts. J Ceram Sci Technol. 6:95–104.
52. Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Béhin P. 2017; Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 33:477–85. DOI:
10.1016/j.dental.2017.01.018. PMID:
28318544.
53. Liu W, Wu H, Zhou M, He R, Jiang Q, Wu Z, Cheng Y, Song X, Chen Y, Wu S. 2016; Fabrication of fine-grained alumina ceramics by a novel process integrating stereolithography and liquid precursor infiltration processing. Ceram Int. 42:17736–41. DOI:
10.1016/j.ceramint.2016.08.099.
54. Wang W, Yu H, Liu Y, Jiang X, Gao B. 2019; Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent. 121:285–91. DOI:
10.1016/j.prosdent.2018.04.012. PMID:
30017167.
55. Uçar Y, AysanMeriç , Ekren O. 2019; Layered manufacturing of dental ceramics: fracture mechanics, microstructure, and elemental composition of lithography-sintered ceramic. J Prosthodont. 28:e310–8. DOI:
10.1111/jopr.12748. PMID:
29430836.
56. Lian Q, Sui W, Wu X, Yang F, Yang S. 2018; Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography. Rapid Prototyp J. 24:114–19. DOI:
10.1108/RPJ-09-2016-0144.
57. Zandinejad A, Methani MM, Schneiderman ED, Revilla-León M, Bds DM. 2019; Fracture Resistance of Additively Manufactured Zirconia Crowns when Cemented to Implant Supported Zirconia Abutments: An in vitro Study. J Prosthodont. 28:893–97. DOI:
10.1111/jopr.13103. PMID:
31430001.