1. Neuman MD, Fleisher LA. Risk of Anesthesia. In: Miller’s Anesthesia. 8th ed. Miller RD, editor. Philadelphia: Churchill Livingstone/Elsevier;2015. p. 1056–83.
2. Vereecke HM, Proost JH, Eleveld DJ, Struys MF. Drug interactions in anesthesia. In: Clinical Pharmacology for Anesthesiology. Johnson KB, editor. New York: Mcgraw Hill;2014. p. 37–62.
3. van den Berg JP, Vereecke HE, Proost JH, Eleveld DJ, Wietasch JK, Absalom AR, et al. Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. Br J Anaesth. 2017; 118:44–57.
4. Scott HB, Choi SW, Wong GT, Irwin MG. The effect of remifentanil on propofol requirements to achieve loss of response to command vs. loss of response to pain. Anaesthesia. 2017; 72:479–87.
5. Lysakowski C, Dumont L, Pellegrini M, Clergue F, Tassonyi E. Effects of fentanyl, alfentanil, remifentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anaesthesia. Br J Anaesth. 2001; 86:523–7.
6. Viby-Mogensen J. Neuromuscular monitoring. Curr Opin Anaesthesiol. 2001; 14:655–9.
7. Martinez-Vazquez P, Lindner C, Melia U, Pandit JJ, Jensen EW. Be aware, unaware and confusion everywhere. In: TIVA and Awareness, in Taking on TIVA: Debunking Myths and Dispelling Misunderstandings. Irwin M, Wong G, Lam S, editors. Cambridge: Cambridge University Press;2020. p. 63–72.
8. Martinez-Vazquez P, Gambus PL, Weber Jensen E. Processed EEG as a measure of brain activity during anaesthesia. In: Physics of Biological Oscillators: New Insights into Non-Equilibrium and Non-Autonomous Systems. Stefanovska A, McClintock PV, editors. Lancaster: Springer;2021. p. 371–83.
9. Müller JN, Kreuzer M, García PS, Schneider G, Hautmann H. Monitoring depth of sedation: evaluating the agreement between the Bispectral Index, qCON and the Entropy Module's State Entropy during flexible bronchoscopy. Minerva Anestesiol. 2017; 83:563–73.
10. Vakkuri A, Yli-Hankala A, Sandin R, Mustola S, Høymork S, Nyblom S, et al. Spectral entropy monitoring is associated with reduced propofol use and faster emergence in propofol-nitrous oxide-alfentanil anesthesia. Anesthesiology. 2005; 103:274–9.
11. Yli-Hankala A, Vakkuri A, Annila P, Korttila K. EEG bispectral index monitoring in sevoflurane or propofol anaesthesia: analysis of direct costs and immediate recovery. Acta Anaesthesiol Scand. 1999; 43:545–9.
12. Riad W, Schreiber M, Saeed AB. Monitoring with EEG entropy decreases propofol requirement and maintains cardiovascular stability during induction of anaesthesia in elderly patients. Eur J Anaesthesiol. 2007; 24:684–8.
13. Ekman A, Lindholm ML, Lennmarken C, Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand. 2004; 48:20–6.
14. Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet. 2004; 363:1757–63.
15. Zhang C, Xu L, Ma YQ, Sun YX, Li YH, Zhang L, et al. Bispectral index monitoring prevent awareness during total intravenous anesthesia: a prospective, randomized, double-blinded, multi-center controlled trial. Chin Med J (Engl). 2011; 124:3664–9.
16. Bergmann I, Göhner A, Crozier TA, Hesjedal B, Wiese CH, Popov AF, et al. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br J Anaesth. 2013; 110:622–8.
17. Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev. 2014; 2014:CD003843.
18. Whitlock EL, Torres BA, Lin N, Helsten DL, Nadelson MR, Mashour GA, et al. Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg. 2014; 118:809–17.
19. Luo C, Zou W. Cerebral monitoring of anaesthesia on reducing cognitive dysfunction and postoperative delirium: a systematic review. J Int Med Res. 2018; 46:4100–10.
20. Lewis SR, Pritchard MW, Fawcett LJ, Punjasawadwong Y. Bispectral index for improving intraoperative awareness and early postoperative recovery in adults. Cochrane Database Syst Rev. 2019; 9:CD003843.
21. Jensen EW, Litvan H, Struys M, Martinez Vazquez P. Pitfalls and challenges when assessing the depth of hypnosis during general anaesthesia by clinical signs and electronic indices. Acta Anaesthesiol Scand. 2004; 48:1260–7.
22. Gruenewald M, Ilies C. Monitoring the nociception-anti-nociception balance. Best Pract Res Clin Anaesthesiol. 2013; 27:235–47.
23. Ledowski T, Schneider M, Gruenewald M, Goyal RK, Teo SR, Hruby J. Surgical pleth index: prospective validation of the score to predict moderate-to-severe postoperative pain. Br J Anaesth. 2019; 123:e328–32.
24. Freye E, Latasch L. Development of opioid tolerance -- molecular mechanisms and clinical consequences. Anasthesiol Intensivmed Notfallmed Schmerzther. 2003; 38:14–26.
25. Benyamin R, Trescot AM, Datta S, Buenaventura R, Adlaka R, Sehgal N, et al. Opioid complications and side effects. Pain Physician. 2008; 11(2 Suppl):S105–20.
26. Lee M, Silverman SM, Hansen H, Patel VB, Manchikanti L. A comprehensive review of opioid-induced hyperalgesia. Pain physician. 2011; 14:145–61.
27. Funk RD, Hilliard P, Ramachandran SK. Perioperative opioid usage: avoiding adverse effects. Plast Reconstr Surg. 2014; 134(4 Suppl 2):S32–9.
28. Patel SS, Spencer CM. Remifentanil. Drugs. 1996; 52:417–27.
29. Peckys D, Landwehrmeyer GB. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study. Neuroscience. 1999; 88:1093–135.
30. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010; 120:3760–72.
31. Bourne S, Machado AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am. 2014; 25:629–38.
32. Hall JE. Guyton and Hall. Somatic Sensations: II. Pain, Headache and Thermal Senstions. In: Textbook of Medical Physiology. Oxford: Elsevier LTD;2020. p. 613–23.
33. Fields HL, Heinricher MM. Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci. 1985; 308:361–74.
34. Riedel W, Neeck G. Nociception, pain, and antinociception: current concepts. Z Rheumatol. 2001; 60:404–15.
35. Lichtner G, Auksztulewicz R, Velten H, Mavrodis D, Scheel M, Blankenburg F, et al. Nociceptive activation in spinal cord and brain persists during deep general anaesthesia. Br J Anaesth. 2018; 121:291–302.
36. Kox WJ, von Heymann C, Heinze J, Prichep LS, John ER, Rundshagen I. Electroencephalographic mapping during routine clinical practice: cortical arousal during tracheal intubation? Anesth Analg. 2006; 102:825–31.
37. Rundshagen I, Schröder T, Heinze J, Prichep L, John ER, Kox WJ. Topographic electroencephalography: endotracheal intubation during anaesthesia with propofol/fentanyl. Anasthesiol Intensivmed Notfallmed Schmerzther. 2005; 40:633–9.
38. Rundshagen I, Schröder T, Prichep LS, John ER, Kox WJ. Changes in cortical electrical activity during induction of anaesthesia with thiopental/fentanyl and tracheal intubation: a quantitative electroencephalographic analysis. Br J Anaesth. 2004; 92:33–8.
39. Hagihira S, Takashina M, Mori T, Ueyama H, Mashimo T. Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia. Anesthesiology. 2004; 100:818–25.
40. Viertiö-Oja H, Maja V, Särkelä M, Talja P, Tenkanen N, Tolvanen-Laakso H, et al. Description of the Entropy algorithm as applied in the Datex-Ohmeda S/5 Entropy Module. Acta Anaesthesiol Scand. 2004; 48:154–61.
41. Weil G, Passot S, Servin F, Billard V. Does spectral entropy reflect the response to intubation or incision during propofol-remifentanil anesthesia? Anesth Analg. 2008; 106:152–9.
42. Gruenewald M, Zhou J, Schloemerkemper N, Meybohm P, Weiler N, Tonner PH, et al. M-Entropy guidance vs standard practice during propofol-remifentanil anaesthesia: a randomised controlled trial. Anaesthesia. 2007; 62:1224–9.
43. Wheeler P, Hoffman WE, Baughman VL, Koenig H. Response entropy increases during painful stimulation. J Neurosurg Anesthesiol. 2005; 17:86–90.
44. Mathews DM, Cirullo PM, Struys MM, De Smet T, Malik RJ, Chang CL, et al. Feasibility study for the administration of remifentanil based on the difference between response entropy and state entropy. Br J Anaesth. 2007; 98:785–91.
45. Jensen EW, Valencia JF, Lopez A, Anglada T, Agusti M, Ramos Y, et al. Monitoring hypnotic effect and nociception with two EEG-derived indices, qCON and qNOX, during general anaesthesia. Acta Anaesthesiol Scand. 2014; 58:933–41.
46. Melia U, Gabarron E, Agusti M, Souto N, Pineda P, Fontanet J, et al. Comparison of the qCON and qNOX indices for the assessment of unconsciousness level and noxious stimulation response during surgery. J Clin Monit Comput. 2017; 31:1273–81.
47. Wang X, Zhang J, Feng K, Yang Y, Qi W, Martinez-Vazquez P, et al. The effect of hypothermia during cardiopulmonary bypass on three electro-encephalographic indices assessing analgesia and hypnosis during anesthesia: consciousness index, nociception index, and bispectral index. Perfusion. 2020; 35:154–62.
48. Loewenfeld IE. The light reflex. Pupillary reflex pathways. In: The Pupil: Anatomy, Physiology and Clinical Applications. Oxford: Butterworth-Heinemann;1999. p. 198–240.
49. Barvais L, Engelman E, Eba JM, Coussaert E, Cantraine F, Kenny GN. Effect site concentrations of remifentanil and pupil response to noxious stimulation. Br J Anaesth. 2003; 91:347–52.
50. Sabourdin N, Barrois J, Louvet N, Rigouzzo A, Guye ML, Dadure C, et al. Pupillometry-guided intraoperative remifentanil administration versus standard practice influences opioid use: a randomized study. Anesthesiology. 2017; 127:284–92.
51. Neice AE, Behrends M, Bokoch MP, Seligman KM, Conrad NM, Larson MD. Prediction of opioid analgesic efficacy by measurement of pupillary unrest. Anesth Analg. 2017; 124:915–21.
52. Duceau B, Baubillier M, Bouroche G, Albi-Feldzer A, Jayr C. Pupillary reflex for evaluation of thoracic paravertebral block: a prospective observational feasibility study. Anesth Analg. 2017; 125:1342–7.
53. Defresne A, Barvais L, Clement F, Bonhomme V. Standardised noxious stimulation-guided individual adjustment of remifentanil target-controlled infusion to prevent haemodynamic responses to laryngoscopy and surgical incision: a randomised controlled trial. Eur J Anaesthesiol. 2018; 35:173–83.
54. Paulus J, Roquilly A, Beloeil H, Théraud J, Asehnoune K, Lejus C. Pupillary reflex measurement predicts insufficient analgesia before endotracheal suctioning in critically ill patients. Crit Care. 2013; 17:R161.
55. Kantor E, Montravers P, Longrois D, Guglielminotti J. Pain assessment in the postanaesthesia care unit using pupillometry: a cross-sectional study after standard anaesthetic care. Eur J Anaesthesiol. 2014; 31:91–7.
56. Dualé C, Julien H, Pereira B, Abbal B, Baud C, Schoeffler P. Pupil diameter during postanesthetic recovery is not influenced by postoperative pain, but by the intraoperative opioid treatment. J Clin Anesth. 2015; 27:23–32.
57. Aissou M, Snauwaert A, Dupuis C, Atchabahian A, Aubrun F, Beaussier M. Objective assessment of the immediate postoperative analgesia using pupillary reflex measurement: a prospective and observational study. Anesthesiology. 2012; 116:1006–12.
58. Sabourdin N, Peretout JB, Khalil E, Guye ML, Louvet N, Constant I. Influence of depth of hypnosis on pupillary reactivity to a standardized tetanic stimulus in patients under propofol-remifentanil target-controlled infusion: a crossover randomized pilot study. Anesth Analg. 2018; 126:70–7.
59. Jeanne M, Clément C, De Jonckheere J, Logier R, Tavernier B. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J Clin Monit Comput. 2012; 26:289–94.
60. Boselli E, Bouvet L, Bégou G, Dabouz R, Davidson J, Deloste JY, et al. Prediction of immediate postoperative pain using the analgesia/nociception index: a prospective observational study. Br J Anaesth. 2014; 112:715–21.
61. Boselli E, Logier R, Bouvet L, Allaouchiche B. Prediction of hemodynamic reactivity using dynamic variations of Analgesia/Nociception Index (∆ANI). J Clin Monit Comput. 2016; 30:977–84.
62. Funcke S, Sauerlaender S, Pinnschmidt HO, Saugel B, Bremer K, Reuter DA, et al. Validation of innovative techniques for monitoring nociception during general anesthesia: a clinical study using tetanic and intracutaneous electrical stimulation. Anesthesiology. 2017; 127:272–83.
63. Julien-Marsollier F, Rachdi K, Caballero MJ, Ayanmanesh F, Vacher T, Horlin AL, et al. Evaluation of the analgesia nociception index for monitoring intraoperative analgesia in children. Br J Anaesth. 2018; 121:462–8.
64. Graça R, Lobo FA. Analgesia Nociception Index (ANI) and ephedrine: a dangerous liasion. J Clin Monit Comput. 2021; 35:953–4.
65. Gruenewald M, Ilies C, Herz J, Schoenherr T, Fudickar A, Höcker J, et al. Influence of nociceptive stimulation on analgesia nociception index (ANI) during propofol-remifentanil anaesthesia. Br J Anaesth. 2013; 110:1024–30.
66. Huiku M, Uutela K, van Gils M, Korhonen I, Kymäläinen M, Meriläinen P, et al. Assessment of surgical stress during general anaesthesia. Br J Anaesth. 2007; 98:447–55.
67. Chen X, Thee C, Gruenewald M, Wnent J, Illies C, Hoecker J, et al. Comparison of surgical stress index-guided analgesia with standard clinical practice during routine general anesthesia: a pilot study. Anesthesiology. 2010; 112:1175–83.
68. Ledowski T, Ang B, Schmarbeck T, Rhodes J. Monitoring of sympathetic tone to assess postoperative pain: skin conductance vs surgical stress index. Anaesthesia. 2009; 64:727–31.
69. Park JH, Lim BG, Kim H, Lee IO, Kong MH, Kim NS. Comparison of surgical pleth index-guided analgesia with conventional analgesia practices in children: a randomized controlled trial. Anesthesiology. 2015; 122:1280–7.
70. Ledowski T, Pascoe E, Ang B, Schmarbeck T, Clarke MW, Fuller C, et al. Monitoring of intra-operative nociception: skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia. 2010; 65:1001–6.
71. Ben-Israel N, Kliger M, Zuckerman G, Katz Y, Edry R. Monitoring the nociception level: a multi-parameter approach. J Clin Monit Comput. 2013; 27:659–68.
72. Martini CH, Boon M, Broens SJ, Hekkelman EF, Oudhoff LA, Buddeke AW, et al. Ability of the nociception level, a multiparameter composite of autonomic signals, to detect noxious stimuli during propofol-remifentanil anesthesia. Anesthesiology. 2015; 123:524–34.
73. Edry R, Recea V, Dikust Y, Sessler DI. Preliminary intraoperative validation of the nociception level index: a noninvasive nociception monitor. Anesthesiology. 2016; 125:193–203.
74. Meijer FS, Martini CH, Broens S, Boon M, Niesters M, Aarts L, et al. Nociception-guided versus standard care during remifentanil-propofol anesthesia: a randomized controlled trial. Anesthesiology. 2019; 130:745–55.
75. Renaud-Roy E, Stockle PA, Maximos S, Brulotte V, Sideris L, Dube P, et al. Correlation between incremental remifentanil doses and the Nociception Level (NOL) index response after intraoperative noxious stimuli. Can J Anaesth. 2019; 66:1049–61.
76. Meijer F, Honing M, Roor T, Toet S, Calis P, Olofsen E, et al. Reduced postoperative pain using nociception level-guided fentanyl dosing during sevoflurane anaesthesia: a randomised controlled trial. Br J Anaesth. 2020; 125:1070–8.
77. Smith CJ, Johnson JM. Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: neural control of skin blood flow and sweating in humans. Auton Neurosci. 2016; 196:25–36.
78. Storm H, Myre K, Rostrup M, Stokland O, Lien MD, Raeder JC. Skin conductance correlates with perioperative stress. Acta Anaesthesiol Scand. 2002; 46:887–95.
79. Gjerstad AC, Storm H, Hagen R, Huiku M, Qvigstad E, Raeder J. Comparison of skin conductance with entropy during intubation, tetanic stimulation and emergence from general anaesthesia. Acta Anaesthesiol Scand. 2007; 51:8–15.
80. Skljarevski V, Ramadan NM. The nociceptive flexion reflex in humans -- review article. Pain. 2002; 96:3–8.
81. Rhudy JL, France CR. Defining the nociceptive flexion reflex (NFR) threshold in human participants: a comparison of different scoring criteria. Pain. 2007; 128:244–53.
82. von Dincklage F, Hackbarth M, Mager R, Rehberg B, Baars JH. Monitoring of the responsiveness to noxious stimuli during anaesthesia with propofol and remifentanil by using RIII reflex threshold and bispectral index. Br J Anaesth. 2010; 104:201–8.
83. von Dincklage F, Correll C, Schneider MH, Rehberg B, Baars JH. Utility of nociceptive flexion reflex threshold, bispectral index, composite variability index and noxious stimulation response index as measures for nociception during general anaesthesia. Anaesthesia. 2012; 67:899–905.
84. Arendt-Nielsen L, Brennum J, Sindrup S, Bak P. Electrophysiological and psychophysical quantification of temporal summation in the human nociceptive system. Eur J Appl Physiol Occup Physiol. 1994; 68:266–73.
85. Ledowski T, Tiong WS, Lee C, Wong B, Fiori T, Parker N. Analgesia nociception index: evaluation as a new parameter for acute postoperative pain. Br J Anaesth. 2013; 111:627–9.
86. Ledowski T, Burke J, Hruby J. Surgical pleth index: prediction of postoperative pain and influence of arousal. Br J Anaesth. 2016; 117:371–4.
87. Ledowski T, Bromilow J, Paech MJ, Storm H, Hacking R, Schug SA. Monitoring of skin conductance to assess postoperative pain intensity. Br J Anaesth. 2006; 97:862–5.
88. Ledowski T, Bromilow J, Wu J, Paech MJ, Storm H, Schug SA. The assessment of postoperative pain by monitoring skin conductance: results of a prospective study. Anaesthesia. 2007; 62:989–93.
89. Ledowski T, Schlueter P, Hall N. Nociception level index: do intra-operative values allow the prediction of acute postoperative pain? J Clin Monit Comput 2021. Advance Access published on Jan 24, 2021. doi: 10.1007/s10877-021-00654-8.
90. Box GE, Jenkins G. Introduction. In: Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day, Inc;1976. p. 1–18.