1. Labuz D, Celik MÖ, Zimmer A, Machelska H. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain. Sci Rep. 2016; 6:32799. DOI:
10.1038/srep32799. PMID:
27605249. PMCID:
5015056.

2. Onasanwo SA, Rotu RA. Antinociceptive and anti-inflammatory potentials of kolaviron: mechanisms of action. J Basic Clin Physiol Pharmacol. 2016; 27:363–70. PMID:
26812784.

3. Staud R. Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert Rev Neurother. 2012; 12:577–85. DOI:
10.1586/ern.12.41. PMID:
22550986. PMCID:
3373184.

4. Zarei S, Bigizadeh S, Pourahmadi M, Ghobadifar MA. Chronic pain and its determinants: a population-based study in Southern Iran. Korean J Pain. 2012; 25:245–53. DOI:
10.3344/kjp.2012.25.4.245. PMID:
23091685. PMCID:
3468801.

5. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. J Pain. 2013; 14:1255–69. DOI:
10.1016/j.jpain.2013.06.008. PMID:
24035349. PMCID:
3818391.

7. LaGraize SC, Fuchs PN. GABAA but not GABAB receptors in the rostral anterior cingulate cortex selectively modulate pain-induced escape/avoidance behavior. Exp Neurol. 2007; 204:182–94. DOI:
10.1016/j.expneurol.2006.10.007. PMID:
17141761. PMCID:
PMC1865116.

8. Hasanein P, Mirazi N, Javanmardi K. GABAA receptors in the central nucleus of amygdala (CeA) affect on pain modulation. Brain Res. 2008; 1241:36–41. DOI:
10.1016/j.brainres.2008.09.041. PMID:
18838064.

9. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau RW 4th, Pin JP. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev. 2009; 60:43–56. DOI:
10.1016/j.brainresrev.2008.12.007. PMID:
19146876.

11. Neto FL, Ferreira-Gomes J, Castro-Lopes JM. Distribution of GABA receptors in the thalamus and their involvement in nociception. Adv Pharmacol. 2006; 54:29–51. DOI:
10.1016/S1054-3589(06)54002-5. PMID:
17175809.

12. Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, et al. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem Int. 2017; 108:27–33. DOI:
10.1016/j.neuint.2017.02.004. PMID:
28192150.

13. Qnais EY, Alatshan AZ, Bseiso YG. Chemical composition, antinociceptive and anti-inflammatory effects of Artemisia herba-alba essential oil. J Food Agric Environ. 2016; 14:20–7.
14. Kaboutari J, Arab HA, Ebrahimi K, Rahbari S. Prophylactic and therapeutic effects of a novel granulated formulation of Artemisia extract on broiler coccidiosis. Trop Anim Health Prod. 2014; 46:43–8. DOI:
10.1007/s11250-013-0444-x. PMID:
23868546.

15. Kaboutari Katadj J, Rafieian-Kopaei M, Nourani H, Karimi B. Wound healing effects of Artemisia sieberi extract on the second degree burn in mice skin. J Herbmed Parmacol. 2016; 5:67–71.
16. Favero Fde F, Grando R, Nonato FR, Sousa IM, Queiroz NC, Longato GB, et al. Artemisia annua L.: evidence of sesquiterpene lactones’ fraction antinociceptive activity. BMC Complement Altern Med. 2014; 14:266. DOI:
10.1186/1472-6882-14-266. PMID:
25065946. PMCID:
PMC4122781.

18. Salah SM, Jäger AK. Two flavonoids from Artemisia herbaalba Asso with in vitro GABA
A-benzodiazepine receptor activity. J Ethnopharmacol. 2005; 99:145–6. DOI:
10.1016/j.jep.2005.01.031. PMID:
15848034.
19. Li J, Casteels T, Frogne T, Ingvorsen C, Honoré C, Courtney M, et al. Artemisinins target GABA
A receptor signaling and impair α cell identity. Cell. 2017; 168:86–100.e15. DOI:
10.1016/j.cell.2016.11.010. PMID:
27916275. PMCID:
PMC5236063.

20. Liu HK. Artemisinin, GABA signaling and cell reprogramming: when an old drug meets modern medicine. Sci Bull. 2017; 62:386–7. DOI:
10.1016/j.scib.2017.02.006.

22. Zendehdel M, Torabi Z, Hassanpour S. Antinociceptive mechanisms of Bunium persicum essential oil in the mouse writhing test: role of opioidergic and histaminergic systems. Vet Med. 2015; 60:63–70. DOI:
10.17221/7988-VETMED.

23. de Sousa DP. Medicinal essential oils: chemical, pharmacological and therapeutic aspects. New York: Nova Science Publishers;2012.
24. Asahi Y, Yonehara N. Involvement of GABAergic systems in manifestation of pharmacological activity of desipramine. Jpn J Pharmacol. 2001; 86:316–22. DOI:
10.1254/jjp.86.316. PMID:
11488432.

25. Fonsêca DV, Salgado PR, de Carvalho FL, Salvadori MG, Penha AR, Leite FC, et al. Nerolidol exhibits antinociceptive and anti-inflammatory activity: involvement of the GABAergic system and proinflammatory cytokines. Fundam Clin Pharmacol. 2016; 30:14–22. DOI:
10.1111/fcp.12166. PMID:
26791997.

26. Scoto GM, Aricò G, Ronsisvalle S, Parenti C. Effects of intraplantar nocistatin and (±)-J 113397 injections on nociceptive behavior in a rat model of inflammation. Pharmacol Biochem Behav. 2012; 100:639–44. DOI:
10.1016/j.pbb.2011.11.007. PMID:
22120202.

27. Taylor F, Dickenson A. Nociceptin/orphanin FQ. A new opioid, a new analgesic? Neuroreport. 1998; 9:R65–70. PMID:
9760102.
28. Jia Y, Linden DR, Serie JR, Seybold VS. Nociceptin/orphanin FQ binding increases in superficial laminae of the rat spinal cord during persistent peripheral inflammation. Neurosci Lett. 1998; 250:21–4. DOI:
10.1016/S0304-3940(98)00430-3. PMID:
9696056.

29. Andoh T, Itoh M, Kuraishi Y. Nociceptin gene expression in rat dorsal root ganglia induced by peripheral inflammation. Neuroreport. 1997; 8:2793–6. DOI:
10.1097/00001756-199708180-00028. PMID:
9295119.

32. Chadwick M, Trewin H, G awthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci. 2013; 14:12780–805. DOI:
10.3390/ijms140612780. PMID:
23783276. PMCID:
3709812.

33. Dinari S, Monajemi R, Amjad L. Analgesic and anti-inflammatory effects of methanol extracts of aerial parts Artemisia aucheri in mice (Balb/c). Scinzer J Agric Biol Sci. 2016; 2:33–8.
34. Koga K, Shimoyama S, Yamada A, Furukawa T, Nikaido Y, Furue H, et al. Chronic inflammatory pain induced GABAergic synaptic plasticity in the adult mouse anterior cingulate cortex. Mol Pain. 2018; 14:1744806918783478. DOI:
10.1177/1744806918783478. PMID:
29956582. PMCID:
PMC6096674.

35. Woll KA, Zhou X, Bhanu NV, Garcia BA, Covarrubias M, Miller KW, et al. Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J. 2018; 32:4172–89. DOI:
10.1096/fj.201701347R. PMID:
29505303. PMCID:
6044061.

36. Anseloni VC, Gold MS. Inflammation-induced shift in the valence of spinal GABA-A receptor-mediated modulation of nociception in the adult rat. J Pain. 2008; 9:732–8. DOI:
10.1016/j.jpain.2008.03.004. PMID:
18467182. PMCID:
2581496.

38. McDonald AJ, Mascagni F, Muller JF. Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res. 2004; 1018:147–58. DOI:
10.1016/j.brainres.2004.05.053. PMID:
15276873.

40. Jang IJ, Davies AJ, Akimoto N, Back SK, Lee PR, Na HS, et al. Acute inflammation reveals GABA
A receptor-mediated nociception in mouse dorsal root ganglion neurons via PGE2 receptor 4 signaling. Physiol Rep. 2017; 5:e13178. DOI:
10.14814/phy2.13178. PMID:
28438981. PMCID:
PMC5408276.
41. Kim MJ, Park YH, Yang KY, Ju JS, Bae YC, Han SK, et al. Participation of central GABA
A receptors in the trigeminal processing of mechanical allodynia in rats. Korean J Physiol Pharmacol. 2017; 21:65–74. DOI:
10.4196/kjpp.2017.21.1.65. PMID:
28066142. PMCID:
5214912.

43. Zhu Y, Lu SG, Gold MS. Persistent inflammation increases GABA-induced depolarization of rat cutaneous dorsal root ganglion neurons in vitro. Neuroscience. 2012; 220:330–40. DOI:
10.1016/j.neuroscience.2012.06.025. PMID:
22728089. PMCID:
3412885.
