1. Vallés AS, Borroni MV, Barrantes FJ. Targeting brain α7 nicotinic acetylcholine receptors in Alzheimer’s disease: rationale and current status. CNS Drugs. 2014; 28:975–987. DOI:
10.1007/s40263-014-0201-3.
2. Mehri S, Shahi M, Razavi BM, Hassani FV, Hosseinzadeh H. Neuroprotective effect of thymoquinone in acrylamide-induced neurotoxicity in Wistar rats. Iran J Basic Med Sci. 2014; 17:1007–1011.
3. Callahan PM, Hutchings EJ, Kille NJ, Chapman JM, Terry AV Jr. Positive allosteric modulator of α7 nicotinic-acetylcholine receptors, PNU-120596 augments the effects of donepezil on learning and memory in aged rodents and non-human primates. Neuropharmacology. 2013; 67:201–212. DOI:
10.1016/j.neuropharm.2012.10.019.
4. Vicens P, Ribes D, Heredia L, Torrente M, Domingo JL. Effects of an alpha7 nicotinic receptor agonist and stress on spatial memory in an animal model of Alzheimer’s disease. Biomed Res Int. 2013; 2013:952719–952726. DOI:
10.1155/2013/952719.
5. Gamal El-Din MM, Ahmad ZA, Zekry M, Abdel Wahab OM. Role of estrogen hormone in lipopolysaccharide- induced alzheimer’s disease in female rats; possible underlying mechanisms and modulation by progesterone hormone. Medical Journal of Cairo University. 2014; 82:175–193.
6. Kalappa BI, Sun F, Johnson SR, Jin K, Uteshev VV. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia. Br J Pharmacol. 2013; 169:1862–1878. DOI:
10.1111/bph.12247. PMID:
23713819. PMCID:
3753841.
7. Vicens P, Ribes D, Torrente M, Domingo JL. Behavioral effects of PNU-282987, an alpha7 nicotinic receptor agonist, in mice. Behav Brain Res. 2011; 216:341–348. DOI:
10.1016/j.bbr.2010.08.015.
8. Kumar BP, Kannan MM, Quine DS. Litsea deccanensis ameliorates myocardial infarction in wistar rats: evidence from biochemical and histological studies. J Young Pharm. 2011; 3:287–296. DOI:
10.4103/0975-1483.90239.
9. Kiernan JA. Histological and histochemical methods: theory and practice. 3rd ed. London: Arnold;2001. p. 111–162.
10. Wilcock DM, Gordon MN, Morgan D. Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat Protoc. 2006; 1:1591–1595. DOI:
10.1038/nprot.2006.277.
11. Xu BL, Wang R, Ma LN, Dong W, Zhao ZW, Zhang JS, Wang YL, Zhang X. Comparison of the effects of resveratrol and caloric restriction on learning and memory in juvenile C57BL/6J mice. Iran J Basic Med Sci. 2015; 18:1118–1123.
12. Bassiony HS, Zickri MB, Metwally HG, Elsherif HA, Alghandour SM, Sakr W. Comparative histological study on the therapeutic effect of green tea and stem cells in Alzheimer’s disease complicating experimentally induced diabetes. Int J Stem Cells. 2015; 8:181–190. DOI:
10.15283/ijsc.2015.8.2.181. PMID:
26634066. PMCID:
4651282.
13. Emsley R, Dunn G, White IR. Mediation and moderation of treatment effects in randomised controlled trials of complex interventions. Stat Methods Med Res. 2010; 19:237–270. DOI:
10.1177/0962280209105014.
14. Li X, Bao X, Wang R. Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening (Review). Int J Mol Med. 2016; 37:271–283.
15. Girard SD, Baranger K, Gauthier C, Jacquet M, Bernard A, Escoffier G, Marchetti E, Khrestchatisky M, Rivera S, Roman FS. Evidence for early cognitive impairment related to frontal cortex in the 5XFAD mouse model of Alzheimer’s disease. J Alzheimers Dis. 2013; 33:781–796.
16. Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015; 12:74–88. DOI:
10.1186/s12974-015-0291-y.
17. Castellani RJ, Perry G. The complexities of the pathology-pathogenesis relationship in Alzheimer disease. Biochem Pharmacol. 2014; 88:671–676. DOI:
10.1016/j.bcp.2014.01.009. PMID:
24447936.
18. Norsharina I, Maznah I, Iqbal S, Lattif LA. Anti- aggregation effects of thymoquinone against Alzheimer’s β-amyloid in vitro. J Med Plants Res. 2013; 7:2280–2288. DOI:
10.5897/JMPR10.852.
19. Khairallah MI, Kassem LA, Yassin NA, El Din MA, Zekri M, Attia M. The hematopoietic growth factor “erythropoietin” enhances the therapeutic effect of mesenchymal stem cells in Alzheimer’s disease. Pak J Biol Sci. 2014; 17:9–21. DOI:
10.3923/pjbs.2014.9.21. PMID:
24783773.
20. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB. Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol Neurodegener. 2011; 6:60–75. DOI:
10.1186/1750-1326-6-60.
21. Sun L, Jin Y, Dong L, Sui HJ, Sumi R, Jahan R, Hu D, Li Z. Coccomyxa Gloeobotrydiformis Improves Learning and Memory in Intrinsic Aging Rats. Int J Biol Sci. 2015; 11:825–832. DOI:
10.7150/ijbs.10861. PMID:
26078724. PMCID:
4466463.
22. Cassano T, Pace L, Bedse G, Lavecchia AM, De Marco F, Gaetani S, Serviddio G. Glutamate and Mitochondria: Two Prominent Players in the Oxidative Stress-Induced Neurodegeneration. Curr Alzheimer Res. 2016; 13:185–197. DOI:
10.2174/1567205013666151218132725.
23. Alhebshi AH, Gotoh M, Suzuki I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun. 2013; 433:362–367. DOI:
10.1016/j.bbrc.2012.11.139. PMID:
23537659.
24. Russo P, Del Bufalo A, Frustaci A, Fini M, Cesario A. Beyond acetylcholinesterase inhibitors for treating Alzheimer’s disease: α7-nAChR agonists in human clinical trials. Curr Pharm Des. 2014; 20:6014–6021. DOI:
10.2174/1381612820666140316130720.
25. Stuckenholz V, Bacher M, Balzer-Geldsetzer M, Alvarez-Fischer D, Oertel WH, Dodel RC, Noelker C. The α7 nAChR agonist PNU-282987 reduces inflammation and MPTP-induced nigral dopaminergic cell loss in mice. J Parkinsons Dis. 2013; 3:161–172.
26. Fan H, Gu R, Wei D. The α7 nAChR selective agonists as drug candidates for Alzheimer’s disease. Adv Exp Med Biol. 2015; 827:353–365. DOI:
10.1007/978-94-017-9245-5_21.
27. El Kouhen R, Hu M, Anderson DJ, Li J, Gopalakrishnan M. Pharmacology of alpha7 nicotinic acetylcholine receptor mediated extracellular signal-regulated kinase signalling in PC12 cells. Br J Pharmacol. 2009; 156:638–648. DOI:
10.1111/j.1476-5381.2008.00069.x. PMID:
19226255. PMCID:
2697700.
28. Kim YS, Noh MY, Cho KA, Kim H, Kwon MS, Kim KS, Kim J, Koh SH, Kim SH. Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release. Mol Neurobiol. 2015; 52:792–803. DOI:
10.1007/s12035-014-8912-5.
29. Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, Ong HK, Cheong SK, Kamarul T. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. PeerJ. 2016; 4:e1536–1554. DOI:
10.7717/peerj.1536. PMID:
26788424. PMCID:
4715434.