3. Bennett ML, Viaene AN. 2021; What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis. 148:105172. DOI:
10.1016/j.nbd.2020.105172. PMID:
33171230.

4. Kettenmann H, Ransom BR. 2013. Neuroglia. 3rd ed. Oxford University Press;New York: p. 930.
5. Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC. 2009; Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development. 136:1443–1452. DOI:
10.1242/dev.029447. PMID:
19363151. PMCID:
PMC2674255.

6. Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. 2013; Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. 31:941–952. DOI:
10.1002/stem.1334. PMID:
23341249.

7. Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim H, Oh Y, Lannon B, Kim KJ, Bell S, Hur JK, Hwang W, Che YH, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G. 2019; Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng. 3:571–582. DOI:
10.1038/s41551-019-0381-8. PMID:
30962586. PMCID:
PMC6612317.

8. Lenroot RK, Giedd JN. 2006; Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 30:718–729. DOI:
10.1016/j.neubiorev.2006.06.001. PMID:
16887188.

9. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. 2009; Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat. 3:5. DOI:
10.3389/neuro.05.005.2009. PMID:
19521542. PMCID:
PMC2694674.

10. Shearman JD, Franks AJ. 1987; S-100 protein in Schwann cells of the developing human peripheral nerve. An immunohistochemical study. Cell Tissue Res. 249:459–463. DOI:
10.1007/BF00215531. PMID:
3304651.
13. Imaizumi Y, Okano H. 2014; Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem. 129:388–399. DOI:
10.1111/jnc.12625. PMID:
24286589.

14. Horisawa K, Suzuki A. 2020; Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci. 96:131–158. DOI:
10.2183/pjab.96.012. PMID:
32281550. PMCID:
PMC7247973.

15. Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M. 2014; Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells. 32:2178–2187. DOI:
10.1002/stem.1721. PMID:
24740884.

16. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. 2014; Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell. 15:497–506. DOI:
10.1016/j.stem.2014.07.013. PMID:
25158936.

18. Carlson BM. 2019. The human body: linking structure and function. Elsevier/Academic Press;London: p. 55.
20. Jäkel S, Dimou L. 2017; Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 11:24. DOI:
10.3389/fncel.2017.00024. PMID:
28243193. PMCID:
PMC5303749.

21. Jessen KR, Mirsky R. 2005; The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 6:671–682. DOI:
10.1038/nrn1746. PMID:
16136171.

23. Greenhalgh AD, David S, Bennett FC. 2020; Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci. 21:139–152. DOI:
10.1038/s41583-020-0263-9. PMID:
32042145.

24. Sakka L, Coll G, Chazal J. 2011; Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 128:309–316. DOI:
10.1016/j.anorl.2011.03.002. PMID:
22100360.

26. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J. 1999; Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 96:25–34. DOI:
10.1016/S0092-8674(00)80956-3.

27. Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisén J. 2009; Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci. 12:259–267. DOI:
10.1038/nn.2268. PMID:
19234458.

28. Wei D, Levic S, Nie L, Gao WQ, Petit C, Jones EG, Yamoah EN. 2008; Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage. Proc Natl Acad Sci U S A. 105:21000–21005. DOI:
10.1073/pnas.0808044105. PMID:
19064919. PMCID:
PMC2634930.

32. Höftberger R, Guo Y, Flanagan EP, Lopez-Chiriboga AS, Endmayr V, Hochmeister S, Joldic D, Pittock SJ, Tillema JM, Gorman M, Lassmann H, Lucchinetti CF. 2020; The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 139:875–892. DOI:
10.1007/s00401-020-02132-y. PMID:
32048003. PMCID:
PMC7181560.

33. Park HT, Kim YH, Lee KE, Kim JK. 2020; Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cell Mol Life Sci. 77:2497–2506. DOI:
10.1007/s00018-019-03431-8. PMID:
31884566. PMCID:
PMC7320037.

34. Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. 2013; The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis. 55:95–103. DOI:
10.1016/j.nbd.2013.03.005. PMID:
23523637.

35. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. 2014; Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 141:302–313. DOI:
10.1111/imm.12163. PMID:
23981039. PMCID:
PMC3930369.

36. van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, Rowitch DH, Nijboer CH. 2018; Origin and dynamics of oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia. 66:221–238. DOI:
10.1002/glia.23256. PMID:
29134703. PMCID:
PMC5765410.

37. Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ. 2011; Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods. 8:957–962. DOI:
10.1038/nmeth.1712. PMID:
21946668. PMCID:
PMC3400969.

38. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA. 2013; Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 12:252–264. DOI:
10.1016/j.stem.2012.12.002. PMID:
23395447. PMCID:
PMC3700553.

39. Stacpoole SR, Spitzer S, Bilican B, Compston A, Karadottir R, Chandran S, Franklin RJ. 2013; High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Reports. 1:437–450. DOI:
10.1016/j.stemcr.2013.09.006. PMID:
24286031. PMCID:
PMC3841262.

40. Piao J, Major T, Auyeung G, Policarpio E, Menon J, Droms L, Gutin P, Uryu K, Tchieu J, Soulet D, Tabar V. 2015; Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell. 16:198–210. DOI:
10.1016/j.stem.2015.01.004. PMID:
25658373. PMCID:
PMC4425211.

41. Yun W, Hong W, Son D, Liu HW, Kim SS, Park M, Kim IY, Kim DS, Song G, You S. 2019; Generation of anterior hindbrain-specific, glial-restricted progenitor-like cells from human pluripotent stem cells. Stem Cells Dev. 28:633–648. DOI:
10.1089/scd.2019.0033. PMID:
30880587.

42. Douvaras P, Fossati V. 2015; Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc. 10:1143–1154. DOI:
10.1038/nprot.2015.075. PMID:
26134954.

43. Douvaras P, Wang J, Zimmer M, Hanchuk S, O'Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V. 2014; Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports. 3:250–259. DOI:
10.1016/j.stemcr.2014.06.012. PMID:
25254339. PMCID:
PMC4176529.

44. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, Araki T, Kato Y, Shirakawa T, Suzuki Y, Yamauchi J, Yoshida S, Sato N. 2017; Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS One. 12:e0171947. DOI:
10.1371/journal.pone.0171947. PMID:
28192470. PMCID:
PMC5305255.

45. Kim DS, Jung SJ, Lee JS, Lim BY, Kim HA, Yoo JE, Kim DW, Leem JW. 2017; Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med. 49:e361. DOI:
10.1038/emm.2017.106. PMID:
28751784. PMCID:
PMC5565952.

46. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, Cui QL, Schambach A, Kim KP, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Schöler HR, Baron-Van Evercooren A, Kuhlmann T. 2017; Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 114:E2243–E2252. DOI:
10.1073/pnas.1614412114. PMID:
28246330. PMCID:
PMC5358375.

47. García-León JA, Kumar M, Boon R, Chau D, One J, Wolfs E, Eggermont K, Berckmans P, Gunhanlar N, de Vrij F, Lendemeijer B, Pavie B, Corthout N, Kushner SA, Dávila JC, Lambrichts I, Hu WS, Verfaillie CM. 2018; SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports. 10:655–672. DOI:
10.1016/j.stemcr.2017.12.014. PMID:
29337119. PMCID:
PMC5830935.

48. Wang J, Pol SU, Haberman AK, Wang C, O'Bara MA, Sim FJ. 2014; Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci U S A. 111:E2885–E2894. DOI:
10.1073/pnas.1408295111. PMID:
24982138. PMCID:
PMC4104854.

49. Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. 2020; Molecular characterization of embryonic stem cell-derived cardiac neural crest-like cells revealed a spatiotemporal expression of an Mlc-3 isoform. Int J Stem Cells. 13:65–79. DOI:
10.15283/ijsc19069. PMID:
31887845. PMCID:
PMC7119212.

50. Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Häring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian X, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. 2019; Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 364:eaas9536. DOI:
10.1126/science.aas9536. PMID:
31171666.

51. Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M. 2004; Neural crest cell lineage segregation in the mouse neural tube. Development. 131:6153–6162. DOI:
10.1242/dev.01533. PMID:
15548576.

52. Achilleos A, Trainor PA. 2012; Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 22:288–304. DOI:
10.1038/cr.2012.11. PMID:
22231630. PMCID:
PMC3271580.

53. Le Douarin NM. 2004; The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev. 121:1089–1102. DOI:
10.1016/j.mod.2004.06.003. PMID:
15296974.

54. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L. 2007; Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol. 25:1468–1475. Erratum in: Nat Biotechnol 2008;26:831. DOI:
10.1038/nbt0708-831b. PMID:
18037878.

55. Lee G, Chambers SM, Tomishima MJ, Studer L. 2010; Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc. 5:688–701. DOI:
10.1038/nprot.2010.35. PMID:
20360764.

57. Huang CW, Huang WC, Qiu X, Fernandes Ferreira da Silva F, Wang A, Patel S, Nesti LJ, Poo MM, Li S. 2017; The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep. 7:17401. DOI:
10.1038/s41598-017-17043-4. PMID:
29234013. PMCID:
PMC5727226.

58. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, Lizarraga P, Weiss WA, So PL, Conklin BR. 2013; A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cells. 2:119–131. PMID:
23862100. PMCID:
PMC3708511.
59. Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Höke A, Rao MS, Zeng X. 2012; Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med. 1:266–278. DOI:
10.5966/sctm.2011-0042. PMID:
23197806. PMCID:
PMC3659695.

61. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. 2011; Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep. 7:394–403. DOI:
10.1007/s12015-010-9198-2. PMID:
21052870.

62. Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, Lim S, Cho YS. 2017; Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Reports. 8:1714–1726. DOI:
10.1016/j.stemcr.2017.04.011. PMID:
28506533. PMCID:
PMC5469943.

66. Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Smith A. 2017; Epigenetic resetting of human pluripotency. Development. 144:2748–2763. Erratum in: Development 2018;145:dev166397. DOI:
10.1242/dev.146811. PMID:
28765214. PMCID:
PMC5560041.

67. Berdasco M, Esteller M. 2011; DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther. 2:42. DOI:
10.1186/scrt83. PMID:
22041459. PMCID:
PMC3308039.

68. Papp B, Plath K. 2011; Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res. 21:486–501. DOI:
10.1038/cr.2011.28. PMID:
21321600. PMCID:
PMC3193418.

70. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ. 2013; Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol. 31:426–433. DOI:
10.1038/nbt.2561. PMID:
23584611. PMCID:
PMC3678540.

71. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA, Wernig M. 2013; Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 31:434–439. DOI:
10.1038/nbt.2564. PMID:
23584610. PMCID:
PMC3677690.

72. Kim JB, Lee H, Araúzo-Bravo MJ, Hwang K, Nam D, Park MR, Zaehres H, Park KI, Lee SJ. 2015; Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J. 34:2971–2983. DOI:
10.15252/embj.201592652. PMID:
26497893. PMCID:
PMC4687687.

73. Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H, Javan M. 2018; In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; promise for myelin repair in multiple sclerosis. PLoS One. 13:e0203785. DOI:
10.1371/journal.pone.0203785. PMID:
30212518. PMCID:
PMC6136770.

74. Farhangi S, Dehghan S, Totonchi M, Javan M. 2019; In vivo conversion of astrocytes to oligodendrocyte lineage cells in adult mice demyelinated brains by Sox2. Mult Scler Relat Disord. 28:263–272. DOI:
10.1016/j.msard.2018.12.041. PMID:
30639828.

75. Liu C, Hu X, Li Y, Lu W, Li W, Cao N, Zhu S, Cheng J, Ding S, Zhang M. 2019; Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol. 11:489–495. DOI:
10.1093/jmcb/mjy088. PMID:
30629188. PMCID:
PMC6604601.

76. Weider M, Wegener A, Schmitt C, Küspert M, Hillgärtner S, Bösl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M. 2015; Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet. 11:e1005008. DOI:
10.1371/journal.pgen.1005008. PMID:
25680202. PMCID:
PMC4334169.

77. Yun W, Choi KA, Hwang I, Zheng J, Park M, Hong W, Jang AY, Kim JH, Choi W, Kim DS, Kim IY, Kim YJ, Liu Y, Yoon BS, Park G, Song G, Hong S, You S. 2022; OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med. 7:4. DOI:
10.1038/s41536-021-00199-z. PMID:
35027563. PMCID:
PMC8758684. PMID:
38e6a2349c0b4d4da6d467d01067452c.

79. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. 2015; Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161:555–568. DOI:
10.1016/j.cell.2015.03.017. PMID:
25892221. PMCID:
PMC4409934.

80. Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. 2016; Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience. 318:178–189. DOI:
10.1016/j.neuroscience.2016.01.028. PMID:
26804242.

81. Matjusaitis M, Wagstaff LJ, Martella A, Baranowski B, Blin C, Gogolok S, Williams A, Pollard SM. 2019; Reprogramming of fibroblasts to oligodendrocyte progenitor-like cells using CRISPR/Cas9-based synthetic transcription factors. Stem Cell Reports. 13:1053–1067. DOI:
10.1016/j.stemcr.2019.10.010. PMID:
31708478. PMCID:
PMC6915844.

82. Sowa Y, Kishida T, Tomita K, Yamamoto K, Numajiri T, Mazda O. 2017; Direct conversion of human fibroblasts into Schwann cells that facilitate regeneration of injured peripheral nerve in vivo. Stem Cells Transl Med. 6:1207–1216. DOI:
10.1002/sctm.16-0122. PMID:
28186702. PMCID:
PMC5442846.

83. Mazzara PG, Massimino L, Pellegatta M, Ronchi G, Ricca A, Iannielli A, Giannelli SG, Cursi M, Cancellieri C, Sessa A, Del Carro U, Quattrini A, Geuna S, Gritti A, Taveggia C, Broccoli V. 2017; Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nat Commun. 8:14088. DOI:
10.1038/ncomms14088. PMID:
28169300. PMCID:
PMC5309703. PMID:
3e5822abc9d6496093cbde7fb6236024.

84. Jang SW, Svaren J. 2009; Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J Biol Chem. 284:20111–20120. DOI:
10.1074/jbc.M109.022426. PMID:
19487693. PMCID:
PMC2740437.

85. LeBlanc SE, Ward RM, Svaren J. 2007; Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol. 27:3521–3529. DOI:
10.1128/MCB.01689-06. PMID:
17325040. PMCID:
PMC1899967.

87. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, Bertness V, Hollis GF, Minna JD. 1985; L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature. 318:69–73. DOI:
10.1038/318069a0. PMID:
2997622.

88. Peng S, Maihle NJ, Huang Y. 2010; Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 29:2153–2159. DOI:
10.1038/onc.2009.500. PMID:
20101213.

89. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, Ramos AH, Woo MS, Weir BA, Getz G, Beroukhim R, O'Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac LR, Lafargue CJ, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs DB, Lin L, Giordano TJ, Wagner P, Minna JD, Gazdar AF, Zhu CQ, Brose MS, Cecconello I, Ribeiro U Jr, Marie SK, Dahl O, Shivdasani RA, Tsao MS, Rubin MA, Wong KK, Regev A, Hahn WC, Beer DG, Rustgi AK, Meyerson M. 2009; SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 41:1238–1242. DOI:
10.1038/ng.465. PMID:
19801978. PMCID:
PMC2783775.

90. Kilmister EJ, Patel J, Bockett N, Chang-McDonald B, Sim D, Wickremesekera A, Davis PF, Tan ST. 2020; Embryonic stem cell-like subpopulations are present within Schwannoma. J Clin Neurosci. 81:201–209. DOI:
10.1016/j.jocn.2020.09.037. PMID:
33222917.

91. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. 2019; Molecular pathology of tumors of the central nervous system. Ann Oncol. 30:1265–1278. DOI:
10.1093/annonc/mdz164. PMID:
31124566. PMCID:
PMC6683853.

93. LeBleu VS, Neilson EG. 2020; Origin and functional heterogeneity of fibroblasts. FASEB J. 34:3519–3536. DOI:
10.1096/fj.201903188R. PMID:
32037627.

94. Mateu R, Živicová V, Krejčí ED, Grim M, Strnad H, Vlček Č, Kolář M, Lacina L, Gál P, Borský J, Smetana K Jr, Dvořánková B. 2016; Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med. 38:1063–1074. DOI:
10.3892/ijmm.2016.2706. PMID:
27513730. PMCID:
PMC5029973.

95. Chipev CC, Simon M. 2002; Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFbeta1. BMC Dermatol. 2:13. DOI:
10.1186/1471-5945-2-13. PMID:
12445328. PMCID:
PMC138803.
97. Kitada M, Murakami T, Wakao S, Li G, Dezawa M. 2019; Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia. 67:950–966. DOI:
10.1002/glia.23582. PMID:
30637802.

100. Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, Huguenard JR, Pașca SP. 2019; Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci. 22:484–491. DOI:
10.1038/s41593-018-0316-9. PMID:
30692691. PMCID:
PMC6788758.

101. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. 2017; iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 94:278–293.e9. DOI:
10.1016/j.neuron.2017.03.042. PMID:
28426964. PMCID:
PMC5482419.
