1. Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell. 2007; 18:1472–1479. DOI:
10.1091/mbc.e06-09-0848. PMID:
17314404. PMCID:
PMC1838984.

4. Cervantes-Alvarez E, Wang Y, Collin de l’Hortet A, Guzman-Lepe J, Zhu J, Takeishi K. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis. 2017; 13:1–15. DOI:
10.1080/15476278.2016.1278133. PMID:
28055309. PMCID:
PMC5323032.

5. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005; 280:87–99. DOI:
10.1016/j.ydbio.2005.01.003. PMID:
15766750.

6. Tabibian JH, Masyuk AI, Masyuk TV, O’Hara SP, LaRusso NF. Physiology of cholangiocytes. Compr Physiol. 2013; 3:541–565. PMID:
23720296. PMCID:
PMC3831353.

8. Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008; 48:607–616. DOI:
10.1002/hep.22381. PMID:
18666240.

9. Cardinale V, Wang Y, Carpino G, Mendel G, Alpini G, Gaudio E, Reid LM, Alvaro D. The biliary tree--a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol. 2012; 9:231–240. DOI:
10.1038/nrgastro.2012.23. PMID:
22371217.

10. Shin S, Walton G, Aoki R, Brondell K, Schug J, Fox A, Smirnova O, Dorrell C, Erker L, Chu AS, Wells RG, Grompe M, Greenbaum LE, Kaestner KH. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes Dev. 2011; 25:1185–1192. DOI:
10.1101/gad.2027811. PMID:
21632825. PMCID:
PMC3110956.

11. Margagliotti S, Clotman F, Pierreux CE, Beaudry JB, Jacquemin P, Rousseau GG, Lemaigre FP. The Onecut transcription factors HNF-6/OC-1 and OC-2 regulate early liver expansion by controlling hepatoblast migration. Dev Biol. 2007; 311:579–589. DOI:
10.1016/j.ydbio.2007.09.013. PMID:
17936262.

12. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004; 117:3165–3174. DOI:
10.1242/jcs.01169. PMID:
15226394.

13. Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology. 2009; 50:871–879. DOI:
10.1002/hep.23048. PMID:
19551907.

14. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ. Notch signaling controls liver development by regulating biliary differentiation. Development. 2009; 136:1727–1739. DOI:
10.1242/dev.029140. PMID:
19369401. PMCID:
PMC2673761.

15. Raynaud P, Carpentier R, Antoniou A, Lemaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol. 2011; 43:245–256. DOI:
10.1016/j.biocel.2009.07.020. PMID:
19735739.

16. Hussain SZ, Sneddon T, Tan X, Micsenyi A, Michalopoulos GK, Monga SP. Wnt impacts growth and differentiation in ex vivo liver development. Exp Cell Res. 2004; 292:157–169. DOI:
10.1016/j.yexcr.2003.08.020. PMID:
14720515.

17. Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip Rev Dev Biol. 2012; 1:643–655. DOI:
10.1002/wdev.47. PMID:
23799566.

19. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006; 79:169–173. DOI:
10.1086/505332. PMID:
16773578. PMCID:
PMC1474136.

20. Kim J, Yang B, Paik N, Choe YH, Paik YH. A case of Alagille syndrome presenting with chronic cholestasis in an adult. Clin Mol Hepatol. 2017; 23:260–264. DOI:
10.3350/cmh.2016.0057. PMID:
28683534. PMCID:
PMC5628001.

24. Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB, Sokol RJ, Kelly DA, Ure B, Whitington PF, Samyn M, Petersen C. Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J Hepatol. 2016; 65:631–642. DOI:
10.1016/j.jhep.2016.04.032. PMID:
27164551.

25. Lazaridis KN, Strazzabosco M, Larusso NF. The cholangiopathies: disorders of biliary epithelia. Gastroenterology. 2004; 127:1565–1577. DOI:
10.1053/j.gastro.2004.08.006. PMID:
15521023.

26. Halilbasic E, Fuchs C, Hofer H, Paumgartner G, Trauner M. Therapy of primary sclerosing cholangitis--today and tomorrow. Dig Dis. 2015; 33(Suppl 2):149–163. DOI:
10.1159/000440827. PMID:
26641242.

27. Mousa HS, Carbone M, Malinverno F, Ronca V, Gershwin ME, Invernizzi P. Novel therapeutics for primary biliary cholangitis: toward a disease-stage-based approach. Autoimmun Rev. 2016; 15:870–876. DOI:
10.1016/j.autrev.2016.07.003. PMID:
27393766.

28. Merino-Azpitarte M, Lozano E, Perugorria MJ, Esparza-Baquer A, Erice O, Santos-Laso A, O’Rourke CJ, Andersen JB, Jimenez-Aguero R, Lacasta A, D’Amato M, Briz Ó, Jalan-Sakrikar N, Huebert RC, Thelen KM, Gradilone SA, Aransay AM, Lavín JL, Fernández-Barrena MG, Matheu A, Marzioni M, Gores GJ, Bujanda L, Marin JJG, Banales JM. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. J Hepatol. 2017; 67:72–83. DOI:
10.1016/j.jhep.2017.02.017. PMID:
28237397. PMCID:
PMC5502751.

29. Sampaziotis F, de Brito MC, Madrigal P, Bertero A, Saeb-Parsy K, Soares FAC, Schrumpf E, Melum E, Karlsen TH, Bradley JA, Gelson WT, Davies S, Baker A, Kaser A, Alexander GJ, Hannan NRF, Vallier L. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol. 2015; 33:845–852. DOI:
10.1038/nbt.3275. PMID:
26167629. PMCID:
PMC4768345.

30. Sampaziotis F, Justin AW, Tysoe OC, Sawiak S, Godfrey EM, Upponi SS, Gieseck RL 3rd, de Brito MC, Berntsen NL, Gomez-Vazquez MJ, Ortmann D, Yiangou L, Ross A, Bargehr J, Bertero A, Zonneveld MCF, Pedersen MT, Pawlowski M, Valestrand L, Madrigal P, Georgakopoulos N, Pirmadjid N, Skeldon GM, Casey J, Shu W, Materek PM, Snijders KE, Brown SE, Rimland CA, Simonic I, Davies SE, Jensen KB, Zilbauer M, Gelson WTH, Alexander GJ, Sinha S, Hannan NRF, Wynn TA, Karlsen TH, Melum E, Markaki AE, Saeb-Parsy K, Vallier L. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med. 2017; 23:954–963. DOI:
10.1038/nm.4360. PMID:
28671689.

31. Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P, Raveux A, Combettes L, Weber A, Corlu A, Dubart-Kupperschmitt A. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology. 2014; 60:700–714. DOI:
10.1002/hep.27165. PMID:
24715669. PMCID:
PMC4315871.

32. Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Kamath BM, Ghanekar A. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol. 2015; 33:853–861. DOI:
10.1038/nbt.3294. PMID:
26167630.

33. De Assuncao TM, Sun Y, Jalan-Sakrikar N, Drinane MC, Huang BQ, Li Y, Davila JI, Wang R, O’Hara SP, Lomberk GA, Urrutia RA, Ikeda Y, Huebert RC. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Lab Invest. 2015; 95:1218. DOI:
10.1038/labinvest.2015.99. PMID:
26412498.

34. Kido T, Koui Y, Suzuki K, Kobayashi A, Miura Y, Chern EY, Tanaka M, Miyajima A. CPM Is a useful cell surface marker to isolate expandable bi-potential liver progenitor cells derived from human iPS cells. Stem Cell Reports. 2015; 5:508–515. DOI:
10.1016/j.stemcr.2015.08.008. PMID:
26365514. PMCID:
PMC4624956.

35. Aikawa M, Miyazawa M, Okamoto K, Toshimitsu Y, Torii T, Okada K, Akimoto N, Ohtani Y, Koyama I, Yoshito I. A novel treatment for bile duct injury with a tissue-engineered bioabsorbable polymer patch. Surgery. 2010; 147:575–580. DOI:
10.1016/j.surg.2009.10.049. PMID:
20004452.

36. Perez Alonso AJ, Del Olmo Rivas C, Romero IM, Canizares Garcia FJ, Poyatos PT. Tissue-engineering repair of extrahepatic bile ducts. J Surg Res. 2013; 179:18–21. DOI:
10.1016/j.jss.2012.08.035. PMID:
23010513.

37. Miyazawa M, Torii T, Toshimitsu Y, Okada K, Koyama I, Ikada Y. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant. 2005; 5:1541–1547. DOI:
10.1111/j.1600-6143.2005.00845.x. PMID:
15888066.

38. Park SH, Kang BK, Lee JE, Chun SW, Jang K, Kim YH, Jeong MA, Kim Y, Kang K, Lee NK, Choi D, Kim HJ. Design and fabrication of a thin-walled free-form scaffold on the basis of medical image data and a 3D printed template: its potential use in bile duct regeneration. Acs Appl Mater Interfaces. 2017; 9:12290–12298. DOI:
10.1021/acsami.7b00849. PMID:
28322040.
