1. Wang GQ, Bai ZX, Shi J, Luo S, Chang HF, Sai XY. Prevalence and risk factors for eye diseases, blindness, and low vision in Lhasa, Tibet. Int J Ophthalmol. 2013; 6:237–241. PMID:
23638429. PMCID:
3633767.
2. Xu ZR, Jiang FG, Chen F. Effects of abnormal optineurin expression on the survival of the rat retinal ganglion cell line RGC-5. Genet Mol Res. 2015; 14:9171–9180. DOI:
10.4238/2015.August.7.27. PMID:
26345850.

3. Qiu X, Wu K, Lin X, Liu Q, Ye Y, Yu M. Dexamethasone increases Cdc42 expression in human TM-1 cells. Curr Eye Res. 2015; 40:290–299. DOI:
10.3109/02713683.2014.922191.

4. Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014; 15:431–442. DOI:
10.1038/nrn3723. PMID:
24894585. PMCID:
4249724.

5. Byrne LC, Oztürk BE, Lee T, Fortuny C, Visel M, Dalkara D, Schaffer DV, Flannery JG. Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h−/− mouse. Gene Ther. 2014; 21:585–592. DOI:
10.1038/gt.2014.31. PMID:
24694538. PMCID:
4047144.

6. Surgucheva I, Shestopalov VI, Surguchov A. Effect of gamma-synuclein silencing on apoptotic pathways in retinal ganglion cells. J Biol Chem. 2008; 283:36377–36385. DOI:
10.1074/jbc.M806660200. PMID:
18936092. PMCID:
2606004.

7. Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet C Semin Med Genet. 2016; 172:349–366. DOI:
10.1002/ajmg.c.31534. PMID:
27862925.

8. Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, Khaw PT, Limb GA. Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl Med. 2014; 3:323–333. DOI:
10.5966/sctm.2013-0112. PMID:
24477073. PMCID:
3952927.

9. Angbohang A, Wu N, Charalambous T, Eastlake K, Lei Y, Kim YS, Sun XH, Limb GA. Downregulation of the canonical WNT signaling pathway by TGFβ1 inhibits photoreceptor differentiation of adult human müller glia with stem cell characteristics. Stem Cells Dev. 2016; 25:1–12. DOI:
10.1089/scd.2015.0262.

10. Park SC, Su D, Tello C. Anti-VEGF therapy for the treatment of glaucoma: a focus on ranibizumab and bevacizumab. Expert Opin Biol Ther. 2012; 12:1641–1647. DOI:
10.1517/14712598.2012.721772. PMID:
22963411.

12. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003; 23:9361–9374. DOI:
10.1128/MCB.23.24.9361-9374.2003. PMID:
14645546. PMCID:
309606.

13. Xin X, Rodrigues M, Umapathi M, Kashiwabuchi F, Ma T, Babapoor-Farrokhran S, Wang S, Hu J, Bhutto I, Welsbie DS, Duh EJ, Handa JT, Eberhart CG, Lutty G, Semenza GL, Montaner S, Sodhi A. Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A. 2013; 110:E3425–E3434. DOI:
10.1073/pnas.1217091110. PMID:
23959876. PMCID:
3767527.
14. Rodrigues M, Xin X, Jee K, Babapoor-Farrokhran S, Kashiwabuchi F, Ma T, Bhutto I, Hassan SJ, Daoud Y, Baranano D, Solomon S, Lutty G, Semenza GL, Montaner S, Sodhi A. VEGF secreted by hypoxic Müller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes. 2013; 62:3863–3873. DOI:
10.2337/db13-0014. PMID:
23884892. PMCID:
3806594.

15. Liby K, Neltner B, Mohamet L, Burd C, Ben-Jonathan N. Endostatin expression by MDA-MB-435 breast cancer cells effectively inhibits tumor growth. Cancer Biol Ther. 2003; 2:48–52. DOI:
10.4161/cbt.179. PMID:
12673115.

16. Faiq MA, Dada R, Qadri R, Dada T. CYP1B1-mediated pathobiology of primary congenital glaucoma. J Curr Glaucoma Pract. 2015; 9:77–80. DOI:
10.5005/jp-journals-10008-1189.

17. Choudhary D, Jansson I, Schenkman JB. CYP1B1, a developmental gene with a potential role in glaucoma therapy. Xenobiotica. 2009; 39:606–615. DOI:
10.1080/00498250903000198. PMID:
19622003.

18. Song WT, Zhang XY, Xia XB. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res Ther. 2013; 4:94. DOI:
10.1186/scrt305.

19. Venturini C, Nag A, Hysi PG, Wang JJ, Wong TY, Healey PR, Mitchell P, Hammond CJ, Viswanathan AC. Wellcome Trust Case Control Consortium 2, BMES GWAS Group. Clarifying the role of ATOH7 in glaucoma endophenotypes. Br J Ophthalmol. 2014; 98:562–566. DOI:
10.1136/bjophthalmol-2013-304080. PMID:
24457358.

20. Yao J, Sun X, Wang Y, Xu G, Qian J. Math5 promotes retinal ganglion cell expression patterns in retinal progenitor cells. Mol Vis. 2007; 13:1066–1072. PMID:
17653051. PMCID:
2779150.
21. Song WT, Zeng Q, Xia XB, Xia K, Pan Q. Atoh7 promotes retinal Müller cell differentiation into retinal ganglion cells. Cytotechnology. 2016; 68:267–277. DOI:
10.1007/s10616-014-9777-1.

22. Hickmott JW, Chen CY, Arenillas DJ, Korecki AJ, Lam SL, Molday LL, Bonaguro RJ, Zhou M, Chou AY, Mathelier A, Boye SL, Hauswirth WW, Molday RS, Wasserman WW, Simpson EM. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev. 2016; 3:16051. DOI:
10.1038/mtm.2016.51. PMID:
27556059. PMCID:
4980111.

23. Maihöfner C, Schlötzer-Schrehardt U, Gühring H, Zeilhofer HU, Naumann GO, Pahl A, Mardin C, Tamm ER, Brune K. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Invest Ophthalmol Vis Sci. 2001; 42:2616–2624. PMID:
11581208.
24. Barraza RA, McLaren JW, Poeschla EM. Prostaglandin pathway gene therapy for sustained reduction of intraocular pressure. Mol Ther. 2010; 18:491–501. DOI:
10.1038/mt.2009.278. PMCID:
2839422.

25. Khare PD, Loewen N, Teo W, Barraza RA, Saenz DT, Johnson DH, Poeschla EM. Durable, safe, multi-gene lentiviral vector expression in feline trabecular meshwork. Mol Ther. 2008; 16:97–106. DOI:
10.1038/sj.mt.6300318.

26. Ko ML, Hu DN, Ritch R, Sharma SC. The combined effect of brain-derived neurotrophic factor and a free radical scavenger in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000; 41:2967–2971. PMID:
10967052.
28. Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int J Mol Sci. 2016; 17:E1584. DOI:
10.3390/ijms17091584. PMID:
27657046. PMCID:
5037849.

29. Hu Y, Cho S, Goldberg JL. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010; 51:1747–1754. DOI:
10.1167/iovs.09-4450. PMCID:
2868417.

30. Johnson TV, Bull ND, Martin KR. Neurotrophic factor delivery as a protective treatment for glaucoma. Exp Eye Res. 2011; 93:196–203. DOI:
10.1016/j.exer.2010.05.016.

31. Tassoni A, Gutteridge A, Barber AC, Osborne A, Martin KR. Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. 2015; 33:3006–3016. DOI:
10.1002/stem.2095. PMID:
26175331. PMCID:
4832383.

32. Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011; 156:92–100. DOI:
10.1016/j.jconrel.2011.06.023. PMID:
21704662.

33. Semba K, Namekata K, Kimura A, Harada C, Mitamura Y, Harada T. Brimonidine prevents neurodegeneration in a mouse model of normal tension glaucoma. Cell Death Dis. 2014; 5:e1341. DOI:
10.1038/cddis.2014.306. PMID:
25032864. PMCID:
4123097.

34. Koeberle PD, Bähr M. The upregulation of GLAST-1 is an indirect antiapoptotic mechanism of GDNF and neurturin in the adult CNS. Cell Death Differ. 2008; 15:471–483. DOI:
10.1038/sj.cdd.4402281.

35. Ruberte J, Ayuso E, Navarro M, Carretero A, Nacher V, Haurigot V, George M, Llombart C, Casellas A, Costa C, Bosch A, Bosch F. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J Clin Invest. 2004; 113:1149–1157. DOI:
10.1172/JCI19478. PMID:
15085194. PMCID:
385397.

36. Ma J, Guo C, Guo C, Sun Y, Liao T, Beattie U, López FJ, Chen DF, Lashkari K. Transplantation of human neural progenitor cells expressing IGF-1 enhances retinal ganglion cell survival. PLoS One. 2015; 10:e0125695. DOI:
10.1371/journal.pone.0125695. PMID:
25923430. PMCID:
4414591.

37. Zhao M, Andrieu-Soler C, Kowalczuk L, Paz Cortés M, Berdugo M, Dernigoghossian M, Halili F, Jeanny JC, Goldenberg B, Savoldelli M, El Sanharawi M, Naud MC, van Ijcken W, Pescini-Gobert R, Martinet D, Maass A, Wijnholds J, Crisanti P, Rivolta C, Behar-Cohen F. A new CRB1 rat mutation links Müller glial cells to retinal telangiectasia. J Neurosci. 2015; 35:6093–6106. DOI:
10.1523/JNEUROSCI.3412-14.2015. PMID:
25878282. PMCID:
4397606.

38. Alves CH, Pellissier LP, Vos RM, Garcia Garrido M, Sothilingam V, Seide C, Beck SC, Klooster J, Furukawa T, Flannery JG, Verhaagen J, Seeliger MW, Wijnholds J. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Hum Mol Genet. 2014; 23:3384–3401. DOI:
10.1093/hmg/ddu048. PMID:
24493795.

39. Pellissier LP, Alves CH, Quinn PM, Vos RM, Tanimoto N, Lundvig DM, Dudok JJ, Hooibrink B, Richard F, Beck SC, Huber G, Sothilingam V, Garcia Garrido M, Le Bivic A, Seeliger MW, Wijnholds J. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis. PLoS Genet. 2013; 9:e1003976. DOI:
10.1371/journal.pgen.1003976. PMID:
24339791. PMCID:
3854796.

40. Dallaire A, Simard MJ. The implication of microRNAs and endo-siRNAs in animal germline and early development. Dev Biol. 2016; 416:18–25. DOI:
10.1016/j.ydbio.2016.06.007. PMID:
27287880.

41. Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep. 2016; 6:21881. DOI:
10.1038/srep21881. PMID:
26905457. PMCID:
4764806.

43. Chiasseu M, Cueva Vargas JL, Destroismaisons L, Vande Velde C, Leclerc N, Di Polo A. Tau accumulation, altered phosphorylation, and missorting promote neurodegeneration in glaucoma. J Neurosci. 2016; 36:5785–5798. DOI:
10.1523/JNEUROSCI.3986-15.2016. PMID:
27225768.

44. Webber HC, Bermudez JY, Sethi A, Clark AF, Mao W. Crosstalk between TGFβ and Wnt signaling pathways in the human trabecular meshwork. Exp Eye Res. 2016; 148:97–102. DOI:
10.1016/j.exer.2016.04.007. PMID:
27091054. PMCID:
5310225.

45. Gonzalez JM Jr. Existence of the canonical Wnt signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 2012; 53:6972. DOI:
10.1167/iovs.12-10985. PMID:
23047718.

46. Brennan LA, Kantorow M. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res. 2009; 88:195–203. DOI:
10.1016/j.exer.2008.05.018. PMCID:
2683477.

47. Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res. 2013; 752:153–171. DOI:
10.1016/j.mrrev.2013.01.001. PMID:
23337404.

48. Wu JH, Zhang SH, Nickerson JM, Gao FJ, Sun Z, Chen XY, Zhang SJ, Zhang R, Gao F, Chen JY, Luo Y, Wang Y, Sun XH. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis. 2015; 74:167–179. DOI:
10.1016/j.nbd.2014.11.014. PMCID:
4523228.

49. Jiang W, Tang L, Zeng J, Chen B. Adeno-associated virus mediated SOD gene therapy protects the retinal ganglion cells from chronic intraocular pressure elevation induced injury via attenuating oxidative stress and improving mitochondrial dysfunction in a rat model. Am J Transl Res. 2016; 8:799–810. PMID:
27158370. PMCID:
4846927.
50. Kim KY, Perkins GA, Shim MS, Bushong E, Alcasid N, Ju S, Ellisman MH, Weinreb RN, Ju WK. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis. 2015; 6:e1839. DOI:
10.1038/cddis.2015.180. PMID:
26247724. PMCID:
4558491.

51. Petit L, Punzo C. Gene therapy approaches for the treatment of retinal disorders. Discov Med. 2016; 22:221–229. PMID:
27875674. PMCID:
5142441.
52. Cotrim AP, Baum BJ. Gene therapy: some history, applications, problems, and prospects. Toxicol Pathol. 2008; 36:97–103. DOI:
10.1177/0192623307309925. PMID:
18337227.

53. Joseph M, Trinh HM, Cholkar K, Pal D, Mitra AK. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv. 2017; 14:631–645. DOI:
10.1080/17425247.2016.1227783.

54. Murphy N, Lynch K, Lohan P, Treacy O, Ritter T. Mesenchymal stem cell therapy to promote corneal allograft survival: current status and pathway to clinical translation. Curr Opin Organ Transplant. 2016; 21:559–567. DOI:
10.1097/MOT.0000000000000360. PMID:
27801687.
55. Clements LE, Garvican ER, Dudhia J, Smith RK. Modulation of mesenchymal stem cell genotype and phenotype by extracellular matrix proteins. Connect Tissue Res. 2016; 57:443–453. DOI:
10.1080/03008207.2016.1215442. PMID:
27448620.

56. Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci. 2011; 52:4506–4515. DOI:
10.1167/iovs.11-7346. PMID:
21498611. PMCID:
3175938.

57. Wang Y, Ying Y, Cui X. Effects on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells engineered to express neurotrophic factors. Stem Cells Int. 2016; DOI:
10.1155/2016/1801340.

58. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009; 11:377–391. DOI:
10.1080/14653240903080367. PMID:
19568970.

59. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:2051–2059. DOI:
10.1167/iovs.09-4509. PMCID:
2868400.

60. Nadri S, Yazdani S, Arefian E, Gohari Z, Eslaminejad MB, Kazemi B, Soleimani M. Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett. 2013; 541:43–48. DOI:
10.1016/j.neulet.2012.12.055. PMID:
23403103.

61. Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun. 2006; 344:1071–1079. DOI:
10.1016/j.bbrc.2006.03.231. PMID:
16643846.

62. Wilkins A, Kemp K, Ginty M, Hares K, Mallam E, Scolding N. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009; 3:63–70. DOI:
10.1016/j.scr.2009.02.006. PMID:
19411199.

63. Weiss JN, Levy S, Malkin A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: a preliminary report. Neural Regen Res. 2015; 10:982–988. DOI:
10.4103/1673-5374.158365. PMID:
26199618. PMCID:
4498363.

64. Cocks G, Curran S, Gami P, Uwanogho D, Jeffries AR, Kathuria A, Lucchesi W, Wood V, Dixon R, Ogilvie C, Steckler T, Price J. The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders. Psychopharmacology (Berl). 2014; 231:1079–1088. DOI:
10.1007/s00213-013-3196-4.

65. Kang E, Wang X, Tippner-Hedges R, Ma H, Folmes CD, Gutierrez NM, Lee Y, Van Dyken C, Ahmed R, Li Y, Koski A, Hayama T, Luo S, Harding CO, Amato P, Jensen J, Battaglia D, Lee D, Wu D, Terzic A, Wolf DP, Huang T, Mitalipov S. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell. 2016; 18:625–636. DOI:
10.1016/j.stem.2016.02.005. PMID:
27151456.

66. Gundry MC, Brunetti L, Lin A, Mayle AE, Kitano A, Wagner D, Hsu JI, Hoegenauer KA, Rooney CM, Goodell MA, Nakada D. Highly Efficient genome editing of murine and human hematopoietic progenitor cells by CRISPR/Cas9. Cell Rep. 2016; 17:1453–1461. DOI:
10.1016/j.celrep.2016.09.092. PMID:
27783956. PMCID:
5087995.

68. Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield VC, Trimarchi JM, Tucker BA, Kuehn MH. Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A. 2016; 113:E3492–E3500. DOI:
10.1073/pnas.1604153113. PMID:
27274060. PMCID:
4922164.
