INTRODUCTION

MATERIALS AND METHODS
Tissue preparation and laser irradiation
Reimplantation and harvest of rabbit auricular cartilage
Cell viability assay
Hoechst and propidium iodide staining
Histologic examination

RESULTS
The effect of laser irradiation on human septal cartilage
![]() | Fig. 2Shape change of human septal cartilage before (A), immediately after (B) diode laser irradiation. The cartilage was bent by laser irradiation. Reshaped cartilage was recovered into flat shape after re-irradiation by laser to the convex side (C). Red arrow indicates the direction of laser irradiation. |
![]() | Fig. 3Confocal images of live/dead assay of the human septal cartilage after (A) spot-pattern laser irradiation and (B) linear pattern laser irradiation. Cartilage was irradiated with different laser power (0.5-2.0 W) and exposure time (5-20 seconds). The green and red fluorescence indicates live and dead cell respectively. The extent of damaged area increased with the increase of the laser power and exposure time irrespective of exposure pattern. Average depth and width of thermal injury following laser cartilage reshaping (human) is plotted in graphs, showing linear increase of damaged depth and width with increase in power and exposure time. |
The effect of laser irradiation on rabbit auricular cartilage
![]() | Fig. 4(A) Confocal images of live/dead assay of the cartilage injury after laser irradiation in rabbit auricular cartilage. Cartilage was irradiated with laser power of 0.3 W, 0.5 W, and 1.0 W for 5 seconds. The extent of damaged area increased with increase in laser power (0.3-1.0 W). (B) Hoechst & PI staining imaging of rabbit auricular cartilage following laser irradiation (laser power, 0.3-1.0 W; exposure time, 5 seconds). Blue and red stained cell indicates live and necrotic cell, respectively. This image shows that thermal injury of chondrocytes resulted in necrosis of chondrocytes rather than apoptosis. |
Regeneration of irradiated auricular cartilage
![]() | Fig. 5Regeneration of rabbit cartilage after thermal injury. (A) Confocal images of live/dead assay show that chondrocytes exhibited necrotic changes immediately after laser irradiation, irrespective of laser power. The chondrocytes in 0.3 W and 0.5 W treatment group regenerated completely and those in 0.3 W treatment group showed earlier regeneration. Chondrocytes in 1 W treatment group could not regenerate until 4 weeks after reimplantation. (B) Change of live/dead chondrocyte proportion in irradiated rabbit after reimplantation. (C) Histologic cross sections of laser-irradiated specimens of rabbit cartilage revealed loss of chondrocytes and condensation of nucleus (H&E, ×200). |

DISCUSSION
