1. Olszewska E, Wagner M, Bernal-Sprekelsen M, Ebmeyer J, Dazert S, Hildmann H, et al. Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol. 2004; Jan. 261(1):6–24.

2. Soldati D, Mudry A. Knowledge about cholesteatoma, from the first description to the modern histopathology. Otol Neurotol. 2001; Nov. 22(6):723–30.

3. Dornelles C, Costa SS, Meurer L, Schweiger C. Some considerations about acquired adult and pediatric cholesteatomas. Braz J Otorhinolaryngol. 2005; Jul-Aug. 71(4):536–45.

4. Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope. 2015; Jan. 125(1):234–40.

5. Kuo CL, Shiao AS, Yung M, Sakagami M, Sudhoff H, Wang CH, et al. Updates and knowledge gaps in cholesteatoma research. Biomed Res Int. 2015; 2015:854024.

6. Aquino JE, Cruz Filho NA, de Aquino JN. Epidemiology of middle ear and mastoid cholesteatomas: study of 1146 cases. Braz J Otorhinolaryngol. 2011; Jun. 77(3):341–7.

7. Chole RA. The molecular biology of bone resorption due to chronic otitis media. Ann N Y Acad Sci. 1997; Dec. 830:95–109.

8. Louw L. Acquired cholesteatoma: summary of the cascade of molecular events. J Laryngol Otol. 2013; Jun. 127(6):542–9.

9. Albino AP, Kimmelman CP, Parisier SC. Cholesteatoma: a molecular and cellular puzzle. Am J Otol. 1998; Jan. 19(1):7–19.
10. Meyerhoff WL, Truelson J. Cholesteatoma staging. Laryngoscope. 1986; Sep. 96(9 Pt 1):935–9.

11. Friedmann I. The comparative pathology of otitis media, experimental and human. II. The histopathology of experimental otitis of the guinea-pig with particular reference to experimental cholesteatoma. J Laryngol Otol. 1955; Sep. 69(9):588–601.
12. Lepercque S, Broekaert D, Van Cauwenberge P. Cytokeratin expression patterns in the human tympanic membrane and external ear canal. Eur Arch Otorhinolaryngol. 1993; 250(2):78–81.

13. Lee RJ, Mackenzie IC, Hall BK, Gantz BJ. The nature of the epithelium in acquired cholesteatoma. Clin Otolaryngol Allied Sci. 1991; Apr. 16(2):168–73.

14. Imamura S, Nozawa I, Imamura M, Murakami Y. Pathogenesis of experimental aural cholesteatoma in the chinchilla. ORL J Otorhinolaryngol Relat Spec. 1999; Mar-Apr. 61(2):84–91.

15. Persaud R, Hajioff D, Trinidade A, Khemani S, Bhattacharyya MN, Papadimitriou N, et al. Evidence-based review of aetiopathogenic theories of congenital and acquired cholesteatoma. J Laryngol Otol. 2007; Nov. 121(11):1013–9.

16. Kuijpers W, Vennix PP, Peters TA, Ramaekers FC. Squamous metaplasia of the middle ear epithelium. Acta Otolaryngol. 1996; Mar. 116(2):293–8.

17. Akyildiz N, Akbay C, Ozgirgin ON, Bayramoglu I, Sayin N. The role of retraction pockets in cholesteatoma development: an ultrastructural study. Ear Nose Throat J. 1993; Mar. 72(3):210–2.

18. Chole RA, Tinling SP. Basal lamina breaks in the histogenesis of cholesteatoma. Laryngoscope. 1985; Mar. 95(3):270–5.

19. Sudhoff H, Bujia J, Borkowshi G, Koc C, Holly A, Hildmann H, et al. Basement membrane in middle ear cholesteatoma: immunohistochemical and ultrastructural observations. Ann Otol Rhinol Laryngol. 1996; Oct. 105(10):804–10.

20. Sudhoff H, Linthicum FH Jr. Cholesteatoma behind an intact tympanic membrane: histopathologic evidence for a tympanic membrane origin. Otol Neurotol. 2001; Jul. 22(4):444–6.

21. Magnan J, Chays A, Bremond G, De Micco C, Lebreuil G. Anatomopathology of cholesteatoma. Acta Otorhinolaryngol Belg. 1991; 45(1):27–34.
22. Kim CS, Chung JW. Morphologic and biologic changes of experimentally induced cholesteatoma in Mongolian gerbils with anticytokeratin and lectin study. Am J Otol. 1999; Jan. 20(1):13–8.
23. Jackler RK, Santa Maria PL, Varsak YK, Nguyen A, Blevins NH. A new theory on the pathogenesis of acquired cholesteatoma: mucosal traction. Laryngoscope. 2015; Aug. 125 Suppl 4:S1–14.

24. Wullstein HL, Wullstein SR. Cholesteatoma: etiology, nosology and tympanoplasty. ORL J Otorhinolaryngol Relat Spec. 1980; 42(6):313–35.
25. McKennan KX, Chole RA. Post-traumatic cholesteatoma. Laryngoscope. 1989; Aug. 99(8 Pt 1):779–82.

26. Falk B, Magnuson B. Evacuation of the middle ear by sniffing: a cause of high negative pressure and development of middle ear disease. Otolaryngol Head Neck Surg. 1984; Jun. 92(3):312–8.

27. Magnuson B, Falk B. Eustachian tube malfunction and middle ear disease in new perspective. J Otolaryngol. 1983; Jun. 12(3):187–93.
28. Lindeman P, Holmquist J. Mastoid volume and eustachian tube function in ears with cholesteatoma. Am J Otol. 1987; Jan. 8(1):5–7.
29. Wolfman DE, Chole RA. Osteoclast stimulation by positive middle-ear air pressure. Arch Otolaryngol Head Neck Surg. 1986; Oct. 112(10):1037–42.

30. Dominguez S, Harker LA. Incidence of cholesteatoma with cleft palate. Ann Otol Rhinol Laryngol. 1988; Nov-Dec. 97(6 Pt 1):659–60.

31. Hornigold R, Morley A, Glore RJ, Boorman J, Sergeant R. The long-term effect of unilateral t-tube insertion in patients undergoing cleft palate repair: 20-year follow-up of a randomised controlled trial. Clin Otolaryngol. 2008; Jun. 33(3):265–8.

32. Spilsbury K, Ha JF, Semmens JB, Lannigan F. Cholesteatoma in cleft lip and palate: a population-based follow-up study of children after ventilation tubes. Laryngoscope. 2013; Aug. 123(8):2024–9.

33. Coker NJ, Jenkins HA, Fisch U. Obliteration of the middle ear and mastoid cleft in subtotal petrosectomy: indications, technique, and results. Ann Otol Rhinol Laryngol. 1986; Jan-Feb. 95(1 Pt 1):5–11.

34. Roland NJ, Phillips DE, Rogers JH, Singh SD. The use of ventilation tubes and the incidence of cholesteatoma surgery in the paediatric population of Liverpool. Clin Otolaryngol Allied Sci. 1992; Oct. 17(5):437–9.

35. Marchioni D, Alicandri-Ciufelli M, Molteni G, Artioli FL, Genovese E, Presutti L. Selective epitympanic dysventilation syndrome. Laryngoscope. 2010; May. 120(5):1028–33.

36. Marchioni D, Grammatica A, Alicandri-Ciufelli M, Aggazzotti-Cavazza E, Genovese E, Presutti L. The contribution of selective dysventilation to attical middle ear pathology. Med Hypotheses. 2011; Jul. 77(1):116–20.

37. Marchioni D, Mattioli F, Alicandri-Ciufelli M, Presutti L. Prevalence of ventilation blockages in patients affected by attic pathology: a case-control study. Laryngoscope. 2013; Nov. 123(11):2845–53.

38. Palva T, Ramsay H. Incudal folds and epitympanic aeration. Am J Otol. 1996; Sep. 17(5):700–8.
39. Palva T, Ramsay H, Bohling T. Tensor fold and anterior epitympanum. Am J Otol. 1997; May. 18(3):307–16.
40. Huisman MA, de Heer E, Ten Dijke P, Grote JJ. Transforming growth factor beta and wound healing in human cholesteatoma. Laryngoscope. 2008; Jan. 118(1):94–8.
41. Sudhoff H, Tos M. Pathogenesis of attic cholesteatoma: clinical and immunohistochemical support for combination of retraction theory and proliferation theory. Am J Otol. 2000; Nov. 21(6):786–92.
42. Lim DJ, Saunders WH. Acquired cholesteatoma: light and electron microscopic observations. Ann Otol Rhinol Laryngol. 1972; Feb. 81(1):1–11.
43. Alves AL, Pereira CS, Ribeiro Fde A, Fregnani JH. Analysis of histopathological aspects in acquired middle ear cholesteatoma. Braz J Otorhinolaryngol. 2008; Nov-Dec. 74(6):835–41.

44. Dornelles C, Meurer L, Selaimen da Costa S, Schweiger C. Histologic description of acquired cholesteatomas: comparison between children and adults. Braz J Otorhinolaryngol. 2006; Sep-Oct. 72(5):641–8.

45. Sade J, Halevy A. The aetiology of bone destruction in chronic otitis media. J Laryngol Otol. 1974; Feb. 88(2):139–43.
46. Bretlau P, Sorensen CH, Jorgensen MB, Dabelsteen E. Bone resorption in human cholesteatomas. Ann Otol Rhinol Laryngol. 1982; Mar-Apr. 91(2 Pt 1):131–5.

47. Kurihara A, Toshima M, Yuasa R, Takasaka T. Bone destruction mechanisms in chronic otitis media with cholesteatoma: specific production by cholesteatoma tissue in culture of bone-resorbing activity attributable to interleukin-1 alpha. Ann Otol Rhinol Laryngol. 1991; Dec. 100(12):989–98.

48. Jung JY, Chole RA. Bone resorption in chronic otitis media: the role of the osteoclast. ORL J Otorhinolaryngol Relat Spec. 2002; Mar-Apr. 64(2):95–107.

49. Maranhao A, Andrade J, Godofredo V, Matos R, Penido N. Epidemiology of intratemporal complications of otitis media. Int Arch Otorhinolaryngol. 2014; Apr. 18(2):178–83.
50. Chole RA, McGinn MD, Tinling SP. Pressure-induced bone resorption in the middle ear. Ann Otol Rhinol Laryngol. 1985; Mar-Apr. 94(2 Pt 1):165–70.

51. McGinn MD, Chole RA, Tinling SP. Bone resorption induced by middle-ear implants. Arch Otolaryngol Head Neck Surg. 1986; Jun. 112(6):635–41.

52. Orisek BS, Chole RA. Pressures exerted by experimental cholesteatomas. Arch Otolaryngol Head Neck Surg. 1987; Apr. 113(4):386–91.

53. Huang CC, Yi ZX, Yuan QG, Abramson M. A morphometric study of the effects of pressure on bone resorption in the middle ear of rats. Am J Otol. 1990; Jan. 11(1):39–43.
54. Kaneko Y, Yuasa R, Ise I, Iino Y, Shinkawa H, Rokugo M, et al. Bone destruction due to the rupture of a cholesteatoma sac: a pathogenesis of bone destruction in aural-cholesteatoma. Laryngoscope. 1980; Nov. 90(11 Pt 1):1865–71.
55. Nguyen KH, Suzuki H, Ohbuchi T, Wakasugi T, Koizumi H, Hashida K, et al. Possible participation of acidic pH in bone resorption in middle ear cholesteatoma. Laryngoscope. 2014; Jan. 124(1):245–50.

56. Chen ZF, Darvell BW, Leung VW. Hydroxyapatite solubility in simple inorganic solutions. Arch Oral Biol. 2004; May. 49(5):359–67.

57. Saunders J, Murray M, Alleman A. Biofilms in chronic suppurative otitis media and cholesteatoma: scanning electron microscopy findings. Am J Otolaryngol. 2011; Jan-Feb. 32(1):32–7.

58. Gu X, Keyoumu Y, Long L, Zhang H. Detection of bacterial biofilms in different types of chronic otitis media. Eur Arch Otorhinolaryngol. 2014; Nov. 271(11):2877–83.

59. Chole RA, Faddis BT. Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg. 2002; Oct. 128(10):1129–33.

60. Lampikoski H, Aarnisalo AA, Jero J, Kinnari TJ. Mastoid biofilm in chronic otitis media. Otol Neurotol. 2012; Jul. 33(5):785–8.

61. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990; 8:253–78.

62. Yellon RF, Leonard G, Marucha PT, Craven R, Carpenter RJ, Lehmann WB, et al. Characterization of cytokines present in middle ear effusions. Laryngoscope. 1991; Feb. 101(2):165–9.

63. Peek FA, Huisman MA, Berckmans RJ, Sturk A, Van Loon J, Grote JJ. Lipopolysaccharide concentration and bone resorption in cholesteatoma. Otol Neurotol. 2003; Sep. 24(5):709–13.

64. Ricciardiello F, Cavaliere M, Mesolella M, Iengo M. Notes on the microbiology of cholesteatoma: clinical findings and treatment. Acta Otorhinolaryngol Ital. 2009; Aug. 29(4):197–202.
65. Nason R, Jung JY, Chole RA. Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol. 2009; Jun. 10(2):151–60.

66. Jung JY, Lee DH, Wang EW, Nason R, Sinnwell TM, Vogel JP, et al. P. aeruginosa infection increases morbidity in experimental cholesteatomas. Laryngoscope. 2011; Nov. 121(11):2449–54.

67. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008; May. 473(2):139–46.

68. Jeong JH, Park CW, Tae K, Lee SH, Shin DH, Kim KR, et al. Expression of RANKL and OPG in middle ear cholesteatoma tissue. Laryngoscope. 2006; Jul. 116(7):1180–4.

69. Sohn SJ. Substance P upregulates osteoclastogenesis by activating nuclear factor kappa B in osteoclast precursors. Acta Otolaryngol. 2005; Feb. 125(2):130–3.

70. Sherman BE, Chole RA. A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg. 1995; Nov. 113(5):569–81.
71. Jung JY, Lin AC, Ramos LM, Faddis BT, Chole RA. Nitric oxide synthase I mediates osteoclast activity in vitro and in vivo. J Cell Biochem. 2003; Jun. 89(3):613–21.

72. Jung JY, Pashia ME, Nishimoto SY, Faddis BT, Chole RA. A possible role for nitric oxide in osteoclastogenesis associated with cholesteatoma. Otol Neurotol. 2004; Sep. 25(5):661–8.

73. Abramson M, Huang CC. Localization of collagenase in human middle ear cholesteatoma. Laryngoscope. 1977; May. 87(5 Pt 1):771–91.

74. Moriyama H, Honda Y, Huang CC, Abramson M. Bone resorption in cholesteatoma: epithelial-mesenchymal cell interaction and collagenase production. Laryngoscope. 1987; Jul. 97(7 Pt 1):854–9.
75. Lazarus GS, Jensen PJ. Plasminogen activators in epithelial biology. Semin Thromb Hemost. 1991; Jul. 17(3):210–6.

76. Olszewska E, Borzym-Kluczyk M, Olszewski S, Rogowski M, Zwierz K. Hexosaminidase as a new potential marker for middle ear cholesteatoma. Clin Biochem. 2006; Nov. 39(11):1088–90.

77. Olszewska E, Olszewski S, Borzym-Kluczyk M, Zwierz K. Role of N-acetyl-beta-d-hexosaminidase in cholesteatoma tissue. Acta Biochim Pol. 2007; 54(2):365–70.

78. Olszewska E, Jakimowicz-Rudy J, Knas M, Chilimoniuk M, Pietruski JK, Sieskiewicz A. Cholesteatoma-associated pathogenicity: potential role of lysosomal exoglycosidases. Otol Neurotol. 2012; Jun. 33(4):596–603.
79. Hansen T, Unger RE, Gaumann A, Hundorf I, Maurer J, Kirkpatrick CJ, et al. Expression of matrix-degrading cysteine proteinase cathepsin K in cholesteatoma. Mod Pathol. 2001; Dec. 14(12):1226–31.

80. Sikka K, Sharma SC, Thakar A, Dattagupta S. Evaluation of epithelial proliferation in paediatric and adult cholesteatomas using the Ki-67 proliferation marker. J Laryngol Otol. 2012; May. 126(5):460–3.

81. Hamajima Y, Komori M, Preciado DA, Choo DI, Moribe K, Murakami S, et al. The role of inhibitor of DNA-binding (Id1) in hyperproliferation of keratinocytes: the pathological basis for middle ear cholesteatoma from chronic otitis media. Cell Prolif. 2010; Oct. 43(5):457–63.

82. Mallet Y, Nouwen J, Lecomte-Houcke M, Desaulty A. Aggressiveness and quantification of epithelial proliferation of middle ear cholesteatoma by MIB1. Laryngoscope. 2003; Feb. 113(2):328–31.

83. Macias MP, Gerkin RD, Macias JD. Increased amphiregulin expression as a biomarker of cholesteatoma activity. Laryngoscope. 2010; Nov. 120(11):2258–63.

84. Bujía J, Schilling V, Holly A, Stammberger M, Kastenbauer E. Hyperproliferation-associated keratin expression in human middle ear cholesteatoma. Acta Otolaryngol. 1993; May. 113(3):364–8.

85. Schulz P, Bujía J, Holly A, Shilling V, Kastenbauer E. Possible autocrine growth stimulation of cholesteatoma epithelium by transforming growth factor alpha. Am J Otolaryngol. 1993; Mar-Apr. 14(2):82–7.

86. Bujia J, Sudhoff H, Holly A, Hildmann H, Kastenbauer E. Immunohistochemical detection of proliferating cell nuclear antigen in middle ear cholesteatoma. Eur Arch Otorhinolaryngol. 1996; 253(1-2):21–4.

87. Ergun S, Zheng X, Carlsoo B. Expression of transforming growth factor-alpha and epidermal growth factor receptor in middle ear cholesteatoma. Am J Otol. 1996; May. 17(3):393–6.
88. Kojima H, Tanaka Y, Tanaka T, Miyazaki H, Shiwa M, Kamide Y, et al. Cell proliferation and apoptosis in human middle ear cholesteatoma. Arch Otolaryngol Head Neck Surg. 1998; Mar. 124(3):261–4.

89. Shiwa M, Kojima H, Moriyama H. Expression of transforming growth factor-alpha (TGF-alpha) in cholesteatoma. J Laryngol Otol. 1998; Aug. 112(8):750–4.
90. Kuczkowski J, Pawelczyk T, Bakowska A, Narozny W, Mikaszewski B. Expression patterns of Ki-67 and telomerase activity in middle ear cholesteatoma. Otol Neurotol. 2007; Feb. 28(2):204–7.

91. Chae SW, Song JJ, Suh HK, Jung HH, Lim HH, Hwang SJ. Expression patterns of p27Kip1 and Ki-67 in cholesteatoma epithelium. Laryngoscope. 2000; Nov. 110(11):1898–901.
92. Yamamoto-Fukuda T, Takahashi H, Terakado M, Hishikawa Y, Koji T. Expression of keratinocyte growth factor and its receptor in non-cholesteatomatous and cholesteatomatous chronic otitis media. Otol Neurotol. 2010; Jul. 31(5):745–51.

93. Barbara M, Raffa S, Mure C, Manni V, Ronchetti F, Monini S, et al. Keratinocyte growth factor receptor (KGF-R) in cholesteatoma tissue. Acta Otolaryngol. 2008; Apr. 128(4):360–4.

94. Lee SH, Jang YH, Tae K, Park YW, Kang MJ, Kim KR, et al. Telomerase activity and cell proliferation index in cholesteatoma. Acta Otolaryngol. 2005; Jul. 125(7):707–12.
95. Kim CS, Lee CH, Chung JW, Kim CD. Interleukin-1 alpha, interleukin-1 beta and interleukin-8 gene expression in human aural cholesteatomas. Acta Otolaryngol. 1996; Mar. 116(2):302–6.
96. Jung TT, Juhn SK. Prostaglandins in human cholesteatoma and granulation tissue. Am J Otol. 1988; May. 9(3):197–200.
97. Sugita T, Huang CC, Abramson M. The effect of endotoxin and prostaglandin E2 on the proliferation of keratinocytes in vitro. Arch Otorhinolaryngol. 1986; 243(3):211–4.

98. Ahn JM, Huang CC, Abramson M. Localization of interleukin-1 in human cholesteatoma. Am J Otolaryngol. 1990; Mar-Apr. 11(2):71–7.

99. Yan SD, Huang CC. Tumor necrosis factor alpha in middle ear cholesteatoma and its effect on keratinocytes in vitro. Ann Otol Rhinol Laryngol. 1991; Feb. 100(2):157–61.

100. Kakiuchi H, Kinoshita K, Katoh Y, Tabata T. Interleukin-1 of cholesteatomatous keratinocytes. Ann Otol Rhinol Laryngol Suppl. 1992; Oct. 157:32–8.

101. Schilling V, Negri B, Bujia J, Schulz P, Kastenbauer E. Possible role of interleukin 1 alpha and interleukin 1 beta in the pathogenesis of cholesteatoma of the middle ear. Am J Otol. 1992; Jul. 13(4):350–5.
102. Shiwa M, Kojima H, Kamide Y, Moriyama H. Involvement of interleukin-1 in middle ear cholesteatoma. Am J Otolaryngol. 1995; Sep-Oct. 16(5):319–24.

103. Sastry KV, Sharma SC, Mann SB, Ganguly NK, Panda NK. Aural cholesteatoma: role of tumor necrosis factor-alpha in bone destruction. Am J Otol. 1999; Mar. 20(2):158–61.
104. Shibosawa E, Tsutsumi K, Takakuwa T, Takahashi S. Stromal expression of matrix metalloprotease-9 in middle ear cholesteatomas. Am J Otol. 2000; Sep. 21(5):621–4.
105. Schmidt M, Grunsfelder P, Hoppe F. Up-regulation of matrix metalloprotease-9 in middle ear cholesteatoma: correlations with growth factor expression in vivo? Eur Arch Otorhinolaryngol. 2001; Nov. 258(9):472–6.
106. Yetiser S, Satar B, Aydin N. Expression of epidermal growth factor, tumor necrosis factor-alpha, and interleukin-1alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol. 2002; Sep. 23(5):647–52.
107. Morales DS, Penido Nde O, da Silva ID, Stavale JN, Guilherme A, Fukuda Y. Matrix metalloproteinase 2: an important genetic marker for cholesteatomas. Braz J Otorhinolaryngol. 2007; Jan-Feb. 73(1):51–7.
108. Vitale RF, Ribeiro Fde A. The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Braz J Otorhinolaryngol. 2007; Jan-Feb. 73(1):117–21.
109. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, et al. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol. 2008; Sep. 1(3):117–38.

110. Suchozebrska-Jesionek D, Szymanski M, Kurzepa J, Golabek W, Stryjecka-Zimmer M. Gelatinolytic activity of matrix metalloproteinases 2 and 9 in middle ear cholesteatoma. J Otolaryngol Head Neck Surg. 2008; Oct. 37(5):628–32.
111. Juhasz A, Sziklai I, Rakosy Z, Ecsedi S, Adany R, Balazs M. Elevated level of tenascin and matrix metalloproteinase 9 correlates with the bone destruction capacity of cholesteatomas. Otol Neurotol. 2009; Jun. 30(4):559–65.
112. Kuczkowski J, Sakowicz-Burkiewicz M, Izycka-Swieszewska E, Mikaszewski B, Pawelczyk T. Expression of tumor necrosis factor-α, interleukin-1α, interleukin-6 and interleukin-10 in chronic otitis media with bone osteolysis. ORL J Otorhinolaryngol Relat Spec. 2011; 73(2):93–9.

113. Vitale RF, Pereira CS, Alves AL, Fregnani JH, Ribeiro FQ. TNF-R2 expression in acquired middle ear cholesteatoma. Braz J Otorhinolaryngol. 2011; Jul-Aug. 77(4):531–6.

114. Rezende CE, Souto RP, Rapoport PB, Campos Ld, Generato MB. Cholesteatoma gene expression of matrix metalloproteinases and their inhibitors by RT-PCR. Braz J Otorhinolaryngol. 2012; Jun. 78(3):116–21.
115. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986; Feb. 319(6053):516–8.

116. Yan SD, Huang CC. The role of tumor necrosis factor-alpha in bone resorption of cholesteatoma. Am J Otolaryngol. 1991; Mar-Apr. 12(2):83–9.

117. Iino Y, Toriyama M, Ogawa H, Kawakami M. Cholesteatoma debris as an activator of human monocytes: potentiation of the production of tumor necrosis factor. Acta Otolaryngol. 1990; Nov-Dec. 110(5-6):410–5.

118. Postlethwaite AE, Lachman LB, Mainardi CL, Kang AH. Interleukin 1 stimulation of collagenase production by cultured fibroblasts. J Exp Med. 1983; Feb. 157(2):801–6.

119. Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001; Mar. 61(5):2276–81.
120. Sudhoff H, Dazert S, Gonzales AM, Borkowski G, Park SY, Baird A, et al. Angiogenesis and angiogenic growth factors in middle ear cholesteatoma. Am J Otol. 2000; Nov. 21(6):793–8.
121. Fujioka O, Huang CC. Platelet-derived growth factor in middle ear cholesteatoma. Eur Arch Otorhinolaryngol. 1994; 251(4):199–204.

122. Huang T, Yan SD, Huang CC. Colony-stimulating factor in middle ear cholesteatoma. Am J Otolaryngol. 1989; Nov-Dec. 10(6):393–8.

123. Schmidt M, Schler G, Gruensfelder P, Hoppe F. Expression of bone morphogenetic protein-2 messenger ribonucleic acid in cholesteatoma fibroblasts. Otol Neurotol. 2002; May. 23(3):267–70.

124. Oger M, Alpay HC, Orhan I, Onalan EE, Yanilmaz M, Sapmaz E. The effect of BMP-2, BMP-4 and BMP-6 on bone destruction of cholesteatoma presence. Am J Otolaryngol. 2013; Nov-Dec. 34(6):652–7.

125. Sheikholeslam-Zadeh R, Decaestecker C, Delbrouck C, Danguy A, Salmon I, Zick Y, et al. The levels of expression of galectin-3, but not of galectin-1 and galectin-8, correlate with apoptosis in human cholesteatomas. Laryngoscope. 2001; Jun. 111(6):1042–7.

126. Olszewska E, Chodynicki S, Chyczewski L. Apoptosis in the pathogenesis of cholesteatoma in adults. Eur Arch Otorhinolaryngol. 2006; May. 263(5):409–13.

127. Chung JH, Lee SH, Park CW, Kim KR, Tae K, Kang SH, et al. Expression of Apoptotic vs Antiapoptotic Proteins in Middle Ear Cholesteatoma. Otolaryngol Head Neck Surg. 2015; Dec. 153(6):1024–30.

128. Zhang W, Chen X, Qin Z. MicroRNA let-7a suppresses the growth and invasion of cholesteatoma keratinocytes. Mol Med Rep. 2015; Mar. 11(3):2097–103.

129. Chole RA. Cellular and subcellular events of bone resorption in human and experimental cholesteatoma: the role of osteoclasts. Laryngoscope. 1984; Jan. 94(1):76–95.

130. Hamzei M, Ventriglia G, Hagnia M, Antonopolous A, Bernal-Sprekelsen M, Dazert S, et al. Osteoclast stimulating and differentiating factors in human cholesteatoma. Laryngoscope. 2003; Mar. 113(3):436–42.

131. Cheshire IM, Blight A, Ratcliffe WA, Proops DW, Heath DA. Production of parathyroid-hormone-related protein by cholesteatoma cells in culture. Lancet. 1991; Oct. 338(8774):1041–3.

132. Berger G, Hawke M, Ekem JK. Bone resorption in chronic otitis media: the role of mast cells. Acta Otolaryngol. 1985; Jul-Aug. 100(1-2):72–80.

133. Schilling V, Bujia J, Negri B, Schulz P, Kastenbauer E. Immunologically activated cells in aural cholesteatoma. Am J Otolaryngol. 1991; Sep-Oct. 12(5):249–53.

134. Hussein MR, Sayed RH, Abu-Dief EE. Immune cell profile in invasive cholesteatomas: preliminary findings. Exp Mol Pathol. 2010; Apr. 88(2):316–23.

135. Szczepanski M, Szyfter W, Jenek R, Wrobel M, Lisewska IM, Zeromski J. Toll-like receptors 2, 3 and 4 (TLR-2, TLR-3 and TLR-4) are expressed in the microenvironment of human acquired cholesteatoma. Eur Arch Otorhinolaryngol. 2006; Jul. 263(7):603–7.

136. Schonermark M, Mester B, Kempf HG, Blaser J, Tschesche H, Lenarz T. Expression of matrix-metalloproteinases and their inhibitors in human cholesteatomas. Acta Otolaryngol. 1996; May. 116(3):451–6.
137. Yoon TH, Lee SH, Park MH, Chung JW, Kim HJ. Inhibition of cholesteatomatous bone resorption with pamidronate disodium. Acta Otolaryngol. 2001; Jan. 121(2):178–81.
138. Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA. Zoledronic acid inhibits osteoclastogenesis in vitro and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol. 2003; Sep. 112(9 Pt 1):780–6.

139. Klenke C, Janowski S, Borck D, Widera D, Ebmeyer J, Kalinowski J, et al. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One. 2012; 7(12):e52718.

140. Macias JD, Gerkin RD, Locke D, Macias MP. Differential gene expression in cholesteatoma by DNA chip analysis. Laryngoscope. 2013; Oct. 123 Suppl S5:S1–21.
