1. Eguchi S, Yanaga K, Sugiyama N, Okudaira S, Furui J, Kanematsu T. Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation. Liver Transpl. 2003; 9:547–51. DOI:
10.1053/jlts.2003.50128. PMID:
12783393.
2. Hadengue A, Lebrec D, Moreau R, Sogni P, Durand F, Gaudin C, et al. Persistence of systemic and splanchnic hyperkinetic circulation in liver transplant patients. Hepatology. 1993; 17:175–8. DOI:
10.1002/hep.1840170202. PMID:
8428714.
3. Schoen JM, Wang HH, Minuk GY, Lautt WW. Shear stress-induced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide. 2001; 5:453–64. DOI:
10.1006/niox.2001.0373. PMID:
11587560.
4. Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Kupffer cells are mandatory for adequate liver regeneration by mediating hyperperfusion via modulation of vasoactive proteins. Microcirculation. 2008; 15:37–47. DOI:
10.1080/10739680701412989. PMID:
17952799.
5. Troisi R, Ricciardi S, Smeets P, Petrovic M, Van Maele G, Colle I, et al. Effects of hemi-portocaval shunts for inflow modulation on the outcome of small-for-size grafts in living donor liver transplantation. Am J Transplant. 2005; 5:1397–404. DOI:
10.1111/j.1600-6143.2005.00850.x. PMID:
15888047.
6. Greenway CV, Stark RD. Hepatic vascular bed. Physiol Rev. 1971; 51:23–65. PMID:
5543903.
8. Atkinson M, Sherlock S. Intrasplenic pressure as index of portal venous pressure. Lancet. 1954; 266:1325–7. DOI:
10.1016/S0140-6736(54)92212-6.
10. Wakim KG. Basic and clinical physiology of the liver: normal and abnormal. Anesth Analg. 1965; 44(Suppl):632–710. PMID:
5319210.
11. Lautt WW. Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res. 2007; 37:891–903. DOI:
10.1111/j.1872-034X.2007.00148.x. PMID:
17854463. PMCID:
PMC2981600.
12. Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009; 89:1269–339. DOI:
10.1152/physrev.00027.2008. PMID:
19789382.
13. Pirola RC, Lieber CS. Hypothesis: energy wastage in alcoholism and drug abuse: possible role of hepatic microsomal enzymes. Am J Clin Nutr. 1976; 29:90–3. PMID:
1108639.
14. Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology. 1987; 7:952–63. DOI:
10.1002/hep.1840070527.
16. Davis WD Jr, Batson HM Jr, Reichman S, Gorlin R, Storaasli JP. Clinical applications of intrasplenic technique of portal pressure and hepatic blood flow determinations. Gastroenterology. 1958; 34:52–64. PMID:
13501355.
19. Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol. 2010; 16:6046–57. DOI:
10.3748/wjg.v16.i48.6046. PMID:
21182219. PMCID:
PMC3012579.
20. Jakab F, Ráth Z, Schmal F, Nagy P, Faller J. The interaction between hepatic arterial and portal venous blood flows;simultaneous measurement by transit time ultrasonic volume flowmetry. Hepatogastroenterology. 1995; 42:18–21. PMID:
7782028.
21. Lautt WW, Legare DJ, d’Almeida MS. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985; 248:H331–8. PMID:
2579585.
22. Lautt WW. The hepatic artery: subservient to hepatic metabolism or guardian of normal hepatic clearance rates of humoral substances. Gen Pharmacol. 1977; 8:73–8. DOI:
10.1016/0306-3623(77)90030-1xs.
23. Ebbing C, Rasmussen S, Godfrey KM, Hanson MA, Kiserud T. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod Sci. 2008; 15:166–78. DOI:
10.1177/1933719107310307. PMID:
18276952.
24. Ezzat WR, Lautt WW. Hepatic arterial pressure-flow autoregulation is adenosine mediated. Am J Physiol. 1987; 252:H836–45. PMID:
3565595.
25. Lautt WW, Legare DJ. The use of 8-phenyltheophylline as a competitive antagonist of adenosine and an inhibitor of the intrinsic regulatory mechanism of the hepatic artery. Can J Physiol Pharmacol. 1985; 63:717–22. DOI:
10.1139/y85-117.
26. Richter S, Vollmar B, Mücke I, Post S, Menger MD. Hepatic arteriolo-portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. J Physiol. 2001; 531:193–201. DOI:
10.1111/j.1469-7793.2001.0193j.x. PMID:
11179403. PMCID:
PMC2278440.
27. Browse DJ, Mathie RT, Benjamin IS, Alexander B. The role of ATP and adenosine in the control of hepatic blood flow in the rabbit liver in vivo. Comp Hepatol. 2003; 2:9. PMID:
14641917. PMCID:
PMC305370.
28. Browse DJ, Mathie RT, Benjamin IS, Alexander B. The action of ATP on the hepatic arterial and portal venous vascular networks of the rabbit liver: the role of adenosine. Eur J Pharmacol. 1997; 320:139–44. DOI:
10.1016/S0014-2999(96)00887-4.
30. Ralevic V, Milner P, Kirkpatrick KA, Burnstock G. Flow-induced release of adenosine 5’-triphosphate from endothelial cells of the rat mesenteric arterial bed. Experientia. 1992; 48:31–4. DOI:
10.1007/BF01923600. PMID:
1371101.
31. Pearson JD, Carleton JS, Gordon JL. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980; 190:421–9. DOI:
10.1042/bj1900421. PMID:
6258567. PMCID:
PMC1162107.
32. Bloom S, Kemp W, Lubel J. Portal hypertension: pathophysiology, diagnosis and management. Intern Med J. 2015; 45:16–26. DOI:
10.1111/imj.12590. PMID:
25230084.
33. Kumar A, Sharma P, Sarin SK. Hepatic venous pressure gradient measurement: time to learn! Indian J Gastroenterol. 2008; 27:74–80. PMID:
18695309.
34. Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol. 2006; 44:111–7. DOI:
10.1016/j.jhep.2005.07.036. PMID:
16274836.
35. Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med. 2005; 353:2254–61. DOI:
10.1056/NEJMoa044456. PMID:
16306522.
36. Procopeţ B, Tantau M, Bureau C. Are there any alternative methods to hepatic venous pressure gradient in portal hypertension assessment? J Gastrointestin Liver Dis. 2013; 22:73–8. PMID:
23539394.
37. Bosch J, Abraldes JG, Fernández M, García-Pagán JC. Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. J Hepatol. 2010; 53:558–67. DOI:
10.1016/j.jhep.2010.03.021. PMID:
20561700.
38. Moreno AH, Burchell AR, Rousselot LM, Panke WF, Slafsky F, Burke JH. Portal blood flow in cirrhosis of the liver. J Clin Invest. 1967; 46:436–45. DOI:
10.1172/JCI105545. PMID:
6023778. PMCID:
PMC297064.
40. Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology. 1984; 87:1120–6. PMID:
6479534.
41. Colle I, Geerts AM, Van Steenkiste C, Van Vlierberghe H. Hemodynamic changes in splanchnic blood vessels in portal hypertension. Anat Rec (Hoboken). 2008; 291:699–713. DOI:
10.1002/ar.20667. PMID:
18484617.
42. Ignarro LJ, Byrns RE, Wood KS. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ Res. 1987; 60:82–92. DOI:
10.1161/01.RES.60.1.82. PMID:
3032474.
43. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288:373–6. DOI:
10.1038/288373a0.
44. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992; 256:225–8. DOI:
10.1126/science.1373522. PMID:
1373522.
45. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990; 347:768–70. DOI:
10.1038/347768a0. PMID:
1700301.
46. Tazi KA, Moreau R, Hervé P, Dauvergne A, Cazals-Hatem D, Bert F, et al. Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology. 2005; 129:303–14. DOI:
10.1053/j.gastro.2005.04.016. PMID:
16012955.
47. Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003; 125:1452–61. DOI:
10.1016/j.gastro.2003.07.014. PMID:
14598261.
48. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009; 50:604–20. DOI:
10.1016/j.jhep.2008.12.011. PMID:
19157625.
49. Jurzik L, Froh M, Straub RH, Schölmerich J, Wiest R. Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol. 2005; 43:258–65. DOI:
10.1016/j.jhep.2005.02.036. PMID:
15963596.
50. Xu L, Carter EP, Ohara M, Martin PY, Rogachev B, Morris K, et al. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol Renal Physiol. 2000; 279:F1110–5. PMID:
11097630.
51. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006; 43(2 Suppl 1):S121–31. DOI:
10.1002/hep.20993. PMID:
16447289.
52. Genecin P, Polio J, Groszmann RJ. Na restriction blunts expansion of plasma volume and ameliorates hyperdynamic circulation in portal hypertension. Am J Physiol. 1990; 259:G498–503. PMID:
2399990.
53. Vaughan RB, Angus PW, Chin-Dusting JP. Evidence for altered vascular responses to exogenous endothelin-1 in patients with advanced cirrhosis with restoration of the normal vasoconstrictor response following successful liver transplantation. Gut. 2003; 52:1505–10. DOI:
10.1136/gut.52.10.1505. PMID:
12970146. PMCID:
PMC1773833.
54. Sato Y, Koyama S, Tsukada K, Hatakeyama K. Acute portal hypertension reflecting shear stress as a trigger of liver regeneration following partial hepatectomy. Surg Today. 1997; 27:518–26. DOI:
10.1007/BF02385805. PMID:
9306545.
55. Busse R, Fleming I. Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. J Vasc Res. 1998; 35:73–84. DOI:
10.1159/000025568. PMID:
9588870.
56. Sato Y, Tsukada K, Hatakeyama K. Role of shear stress and immune responses in liver regeneration after a partial hepatectomy. Surg Today. 1999; 29:1–9. DOI:
10.1007/BF02482962. PMID:
9934824.
57. Koch KS, Leffert HL. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979; 18:153–63. DOI:
10.1016/0092-8674(79)90364-7.
58. Yee AG, Revel JP. Loss and reappearance of gap junctions in regenerating liver. J Cell Biol. 1978; 78:554–64. DOI:
10.1083/jcb.78.2.554.
60. Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, et al. Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology. 2004; 39:393–402. DOI:
10.1002/hep.20075. PMID:
14767992.
61. Schlosser SF, Burgstahler AD, Nathanson MH. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996; 93:9948–53. DOI:
10.1073/pnas.93.18.9948. PMID:
8790437. PMCID:
PMC38535.
62. Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L, et al. ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol. 2010; 52:54–62. DOI:
10.1016/j.jhep.2009.10.005. PMID:
19914731. PMCID:
PMC3625734.
63. Crumm S, Cofan M, Juskeviciute E, Hoek JB. Adenine nucleotide changes in the remnant liver: An early signal for regeneration after partial hepatectomy. Hepatology. 2008; 48:898–908. DOI:
10.1002/hep.22421. PMID:
18697206. PMCID:
PMC3348855.
64. Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963; 44:239–42. PMID:
13976646.
65. Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997; 100:2923–30. DOI:
10.1172/JCI119842. PMID:
9389760. PMCID:
PMC508500.
66. Wang HH, Lautt WW. Does nitric oxide (NO) trigger liver regeneration? Proc West Pharmacol Soc. 1997; 40:17–8. PMID:
9436201.
67. Wang HH, Lautt WW. Evidence of nitric oxide, a flow-dependent factor, being a trigger of liver regeneration in rats. Can J Physiol Pharmacol. 1998; 76:1072–9. DOI:
10.1139/y98-128.
68. Hortelano S, Zeini M, Casado M, Martín-Sanz P, Boscá L. Animal models for the study of liver regeneration: role of nitric oxide and prostaglandins. Front Biosci. 2007; 12:13–21. DOI:
10.2741/2045. PMID:
17127280.
69. García-Trevijano ER, Martínez-Chantar ML, Latasa MU, Mato JM, Avila MA. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterology. 2002; 122:1355–63. DOI:
10.1053/gast.2002.33020. PMID:
11984522.
70. Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation. 1999; 67:321–7. DOI:
10.1097/00007890-199901270-00024. PMID:
10075602.
71. Gondolesi GE, Florman S, Matsumoto C, Huang R, Fishbein TM, Sheiner PA, et al. Venous hemodynamics in living donor right lobe liver transplantation. Liver Transpl. 2002; 8:809–13. DOI:
10.1053/jlts.2002.33690. PMID:
12200783.
72. García-Valdecasas JC, Fuster J, Charco R, Bombuy E, Fondevila C, Ferrer J, et al. Changes in portal vein flow after adult living-donor liver transplantation: does it influence postoperative liver function? Liver Transpl. 2003; 9:564–9. DOI:
10.1053/jlts.2003.50069. PMID:
12783396.
73. Park MY, Lee YJ, Rha SE, Oh SN, Byun JY, Kim DG. Correlation of portal venous velocity and portal venous flow with short-term graft regeneration in recipients of living donor liver transplants. Transplant Proc. 2008; 40:1488–91. DOI:
10.1016/j.transproceed.2008.01.074. PMID:
18589135.
74. Jiang SM, Zhou GW, Zhang R, Peng CH, Yan JQ, Wan L, et al. Role of splanchnic hemodynamics in liver regeneration after living donor liver transplantation. Liver Transpl. 2009; 15:1043–9. DOI:
10.1002/lt.21797. PMID:
19718645.
75. Lo CM, Liu CL, Fan ST. Portal hyperperfusion injury as the cause of primary nonfunction in a small-for-size liver graft-successful treatment with splenic artery ligation. Liver Transpl. 2003; 9:626–8. DOI:
10.1053/jlts.2003.50081. PMID:
12783407.
76. Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant. 2005; 5:2605–10. DOI:
10.1111/j.1600-6143.2005.01081.x. PMID:
16212618.
77. Takeda K, Tanaka K, Kumamoto T, Nojiri K, Mori R, Taniguchi K, et al. Emergency versus elective living-donor liver transplantation: a comparison of a single center analysis. Surg Today. 2012; 42:453–9. DOI:
10.1007/s00595-011-0040-5. PMID:
22116395.
78. Gruttadauria S, Pagano D, Luca A, Gridelli B. Small-for-size syndrome in adult-to-adult living-related liver transplantation. World J Gastroenterol. 2010; 16:5011–5. DOI:
10.3748/wjg.v16.i40.5011. PMID:
20976835. PMCID:
PMC2965275.
79. Kelly DM, Zhu X, Shiba H, Irefin S, Trenti L, Cocieru A, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl. 2009; 15:1448–57. DOI:
10.1002/lt.21863. PMID:
19877203.
81. Soejima Y, Taketomi A, Yoshizumi T, Uchiyama H, Harada N, Ijichi H, et al. Feasibility of left lobe living donor liver transplantation between adults: an 8-year, single-center experience of 107 cases. Am J Transplant. 2006; 6:1004–11. DOI:
10.1111/j.1600-6143.2006.01284.x. PMID:
16611337.
82. Hill MJ, Hughes M, Jie T, Cohen M, Lake J, Payne WD, et al. Graft weight/recipient weight ratio: how well does it predict outcome after partial liver transplants? Liver Transpl. 2009; 15:1056–62. DOI:
10.1002/lt.21846. PMID:
19718640.
83. Ikegami T, Shirabe K, Yoshizumi T, Aishima S, Taketomi YA, Soejima Y, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia. Am J Transplant. 2012; 12:1886–97. DOI:
10.1111/j.1600-6143.2012.04052.x. PMID:
22494784.
84. Asencio JM, Vaquero J, Olmedilla L, García Sabrido JL. “Small-for-flow” syndrome: shifting the “size” paradigm. Med Hypotheses. 2013; 80:573–7. DOI:
10.1016/j.mehy.2013.01.028. PMID:
23428310.
85. Luca A, Miraglia R, Caruso S, Milazzo M, Gidelli B, Bosch J. Effects of splenic artery occlusion on portal pressure in patients with cirrhosis and portal hypertension. Liver Transpl. 2006; 12:1237–43. DOI:
10.1002/lt.20762. PMID:
16741929.
86. Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, et al. Small-for-size graft in living donor liver transplantation: how far should we go? Liver Transpl. 2003; 9:S29–35. DOI:
10.1053/jlts.2003.50198. PMID:
12942476.
87. Ito T, Kiuchi T, Yamamoto H, Oike F, Ogura Y, Fujimoto Y, et al. Changes in portal venous pressure in the early phase after living donor liver transplantation: pathogenesis and clinical implications. Transplantation. 2003; 75:1313–7. DOI:
10.1097/01.TP.0000063707.90525.10. PMID:
12717222.
88. Palmes D, Minin E, Budny T, Uhlmann D, Armann B, Stratmann U, et al. The endothelin/nitric oxide balance determines small-for-size liver injury after reduced-size rat liver transplantation. Virchows Arch. 2005; 447:731–41. DOI:
10.1007/s00428-005-0006-3. PMID:
16012845.
89. Kaido T, Mori A, Ogura Y, Hata K, Yoshizawa A, Iida T, et al. Lower limit of the graft-to-recipient weight ratio can be safely reduced to 0.6% in adult-to-adult living donor liver transplantation in combination with portal pressure control. Transplant Proc. 2011; 43:2391–3. DOI:
10.1016/j.transproceed.2011.05.037. PMID:
21839274.
90. Marcos A, Olzinski AT, Ham JM, Fisher RA, Posner MP. The interrelationship between portal and arterial blood flow after adult to adult living donor liver transplantation. Transplantation. 2000; 70:1697–703. DOI:
10.1097/00007890-200012270-00006. PMID:
11152099.
91. Rocheleau B, Ethier C, Houle R, Huet PM, Bilodeau M. Hepatic artery buffer response following left portal vein ligation: its role in liver tissue homeostasis. Am J Physiol. 1999; 277:G1000–7. PMID:
10564106.
92. Troisi R, de Hemptinne B. Clinical relevance of adapting portal vein flow in living donor liver transplantation in adult patients. Liver Transpl. 2003; 9:S36–41. DOI:
10.1053/jlts.2003.50200. PMID:
12942477.
93. Fondevila C, Hessheimer AJ, Taurá P, Sánchez O, Calatayud D, de Riva N, et al. Portal hyperperfusion: mechanism of injury and stimulus for regeneration in porcine small-for-size transplantation. Liver Transpl. 2010; 16:364–74. DOI:
10.1002/lt.21989. PMID:
20209596.
94. Boillot O, Delafosse B, Méchet I, Boucaud C, Pouyet M. Small-for-size partial liver graft in an adult recipient;a new transplant technique. Lancet. 2002; 359:406–7. DOI:
10.1016/S0140-6736(02)07593-1.
95. Yamada T, Tanaka K, Uryuhara K, Ito K, Takada Y, Uemoto S. Selective hemi-portocaval shunt based on portal vein pressure for small-for-size graft in adult living donor liver transplantation. Am J Transplant. 2008; 8:847–53. DOI:
10.1111/j.1600-6143.2007.02144.x. PMID:
18261170.
96. Botha JF, Langnas AN, Campos BD, Grant WJ, Freise CE, Ascher NL, et al. Left lobe adult-to-adult living donor liver transplantation: small grafts and hemiportocaval shunts in the prevention of small-for-size syndrome. Liver Transpl. 2010; 16:649–57. DOI:
10.1002/lt.22043.
97. Kanazawa H, Takada Y, Ogura Y, Oike F, Egawa H, Uemoto S. Mesorenal shunt using inferior mesenteric vein and left renal vein in a case of LDLT. Transpl Int. 2009; 22:1189–92. DOI:
10.1111/j.1432-2277.2009.00928.x. PMID:
19686463.
98. Sato Y, Yamamoto S, Takeishi T, Kato T, Nakatsuka H, Kobayashi T, et al. Inferior mesenteric venous left renal vein shunting for decompression of excessive portal hypertension in adult living related liver transplantation. Transplant Proc. 2004; 36:2234–6. DOI:
10.1016/j.transproceed.2004.08.027. PMID:
15561203.
99. Sato Y, Yamamoto S, Takeishi T, Hirano K, Kobayashi T, Kato T, et al. Management of major portosystemic shunting in small-for-size adult living-related donor liver transplantation with a left-sided graft liver. Surg Today. 2006; 36:354–60. DOI:
10.1007/s00595-005-3136-y. PMID:
16554993.
100. Ogura Y, Hori T, El Moghazy WM, Yoshizawa A, Oike F, Mori A, et al. Portal pressure <15 mm Hg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before. Liver Transpl. 2010; 16:718–28. PMID:
20517905.
101. Umeda Y, Yagi T, Sadamori H, Matsukawa H, Matsuda H, Shinoura S, et al. Effects of prophylactic splenic artery modulation on portal overperfusion and liver regeneration in small-for-size graft. Transplantation. 2008; 86:673–80. DOI:
10.1097/TP.0b013e318181e02d. PMID:
18791439.
102. Humar A, Beissel J, Crotteau S, Cohen M, Lake J, Payne WD. Delayed splenic artery occlusion for treatment of established small-for-size syndrome after partial liver transplantation. Liver Transpl. 2009; 15:163–8. DOI:
10.1002/lt.21636. PMID:
19177447.
103. Botha JF, Campos BD, Johanning J, Mercer D, Grant W, Langnas A. Endovascular closure of a hemiportocaval shunt after small-for-size adult-to-adult left lobe living donor liver transplantation. Liver Transpl. 2009; 15:1671–5. DOI:
10.1002/lt.21944. PMID:
19938118.
104. Raut V, Alikhanov R, Belghiti J, Uemoto S. Review of the surgical approach to prevent small-for-size syndrome in recipients after left lobe adult LDLT. Surg Today. 2014; 44:1189–96. DOI:
10.1007/s00595-013-0658-6. PMID:
23904045.
105. Eipel C, Abshagen K, Ritter J, Cantré D, Menger MD, Vollmar B. Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int. 2010; 23:998–1007. DOI:
10.1111/j.1432-2277.2010.01079.x. PMID:
20302595.
106. Payen DM, Fratacci MD, Dupuy P, Gatecel C, Vigouroux C, Ozier Y, et al. Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery. 1990; 107:417–27. PMID:
2181716.
107. Samimi F, Irish WD, Eghtesad B, Demetris AJ, Starzl TE, Fung JJ. Role of splenectomy in human liver transplantation under modern-day immunosuppression. Dig Dis Sci. 1998; 43:1931–7. DOI:
10.1023/A:1018822206580. PMID:
9753254. PMCID:
PMC2977917.
108. Pan C, Shi Y, Zhang JJ, Deng YL, Zheng H, Zhu ZJ, et al. Single-center experience of 253 portal vein thrombosis patients undergoing liver transplantation in China. Transplant Proc. 2009; 41:3761–5. DOI:
10.1016/j.transproceed.2009.06.215. PMID:
19917382.
109. Piscaglia F, Zironi G, Gaiani S, Mazziotti A, Cavallari A, Gramantieri L, et al. Systemic and splanchnic hemodynamic changes after liver transplantation for cirrhosis: a long-term prospective study. Hepatology. 1999; 30:58–64. DOI:
10.1002/hep.510300112. PMID:
10385639.
110. Balci D, Taner B, Dayangac M, Akin B, Yaprak O, Duran C, et al. Splenic abscess after splenic artery ligation in living donor liver transplantation: a case report. Transplant Proc. 2008; 40:1786–8. DOI:
10.1016/j.transproceed.2007.10.012. PMID:
18589197.
111. Hori T, Ogura Y, Ogawa K, Kaido T, Segawa H, Okajima H, et al. How transplant surgeons can overcome the inevitable insufficiency of allograft size during adult living-donor liver transplantation: strategy for donor safety with a smaller-size graft and excellent recipient results. Clin Transplant. 2012; 26:E324–34. DOI:
10.1111/j.1399-0012.2012.01664.x. PMID:
22686957.
112. Sainz-Barriga M, Scudeller L, Costa MG, de Hemptinne B, Troisi RI. Lack of a correlation between portal vein flow and pressure: toward a shared interpretation of hemodynamic stress governing inflow modulation in liver transplantation. Liver Transpl. 2011; 17:836–48. DOI:
10.1002/lt.22295. PMID:
21384528.
113. Hessheimer AJ, Fondevila C, Taurá P, Muñoz J, Sánchez O, Fuster J, et al. Decompression of the portal bed and twice-baseline portal inflow are necessary for the functional recovery of a “small-for-size” graft. Ann Surg. 2011; 253:1201–10. DOI:
10.1097/SLA.0b013e3181ffb2d7. PMID:
21587116.
114. Shimamura T, Taniguchi M, Jin MB, Suzuki T, Matsushita M, Furukawa H, et al. Excessive portal venous inflow as a cause of allograft dysfunction in small-for-size living donor liver transplantation. Transplant Proc. 2001; 33:1331. DOI:
10.1016/S0041-1345(00)02496-9.
115. Feng AC, Fan HL, Chen TW, Hsieh CB. Hepatic hemodynamic changes during liver transplantation: a review. World J Gastroenterol. 2014; 20:11131–41. DOI:
10.3748/wjg.v20.i32.11131. PMID:
25170200. PMCID:
PMC4145754.
116. Guo L, Haga S, Enosawa S, Naruse K, Harihara Y, Sugawara Y, et al. Improved hepatic regeneration with reduced injury by redox factor-1 in a rat small-sized liver transplant model. Am J Transplant. 2004; 4:879–87. DOI:
10.1111/j.1600-6143.2004.00444.x. PMID:
15147421.
117. Xu X, Man K, Zheng SS, Liang TB, Lee TK, Ng KT, et al. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl. 2006; 12:621–7. DOI:
10.1002/lt.20630. PMID:
16555322.
118. Kuriyama N, Isaji S, Hamada T, Kishiwada M, Ohsawa I, Usui M, et al. The cytoprotective effects of addition of activated protein C into preservation solution on small-for-size grafts in rats. Liver Transpl. 2010; 16:1–11. DOI:
10.1002/lt.21923. PMID:
20035525.
119. Yagi S, Nagai K, Kadaba P, Afify M, Teramukai S, Uemoto S, et al. A novel organ preservation for small partial liver transplantations in rats: venous systemic oxygen persufflation with nitric oxide gas. Am J Transplant. 2013; 13:222–8. DOI:
10.1111/j.1600-6143.2012.04310.x. PMID:
23126657.
120. Yagi S, Doorschodt BM, Afify M, Klinge U, Kobayashi E, Uemoto S, et al. Improved preservation and microcirculation with POLYSOL after partial liver transplantation in rats. J Surg Res. 2011; 167:e375–83. DOI:
10.1016/j.jss.2010.12.040. PMID:
21392801.
121. Ji Y, Dahmen U, Madrahimov N, Madrahimova F, Xing W, Dirsch O. G-CSF administration in a small-for-size liver model. J Invest Surg. 2009; 22:167–77. DOI:
10.1080/08941930802713027. PMID:
19466653.
122. Ijichi H, Taketomi A, Yoshizumi T, Uchiyama H, Yonemura Y, Soejima Y, et al. Hyperbaric oxygen induces vascular endothelial growth factor and reduces liver injury in regenerating rat liver after partial hepatectomy. J Hepatol. 2006; 45:28–34. DOI:
10.1016/j.jhep.2005.12.021. PMID:
16513203.
123. Suehiro T, Shimada M, Kishikawa K, Shimura T, Soejima Y, Yoshizumi T, et al. Effect of intraportal infusion to improve small for size graft injury in living donor adult liver transplantation. Transpl Int. 2005; 18:923–8. DOI:
10.1111/j.1432-2277.2005.00159.x. PMID:
16008741.
125. Sand L, Rizell M, Houltz E, Karlsen K, Wiklund J, Odenstedt Hergès H, et al. Effect of patient position and PEEP on hepatic, portal and central venous pressures during liver resection. Acta Anaesthesiol Scand. 2011; 55:1106–12. DOI:
10.1111/j.1399-6576.2011.02502.x. PMID:
22092208.
126. Greenway CV, Lautt WW. Distensibility of hepatic venous resistance sites and consequences on portal pressure. Am J Physiol. 1988; 254:H452–8. PMID:
3348424.
127. Laine GA, Hall JT, Laine SH, Granger J. Transsinusoidal fluid dynamics in canine liver during venous hypertension. Circ Res. 1979; 45:317–23. DOI:
10.1161/01.RES.45.3.317. PMID:
572270.
128. Ryu TH, Jung JY, Choi DL, Han YS, Kim JD, Kim JH. Optimal central venous pressure during the neohepatic phase to decrease peak portal vein flow velocity for the prevention of portal hyperperfusion in patients undergoing living donor liver transplantation. Transplant Proc. 2015; 47:1194–8. DOI:
10.1016/j.transproceed.2014.10.071. PMID:
26036552.