1. Park PR, Jo S, Jin SH, Kim TJ. 2020; MicroRNA-10b plays a role in bone formation by suppressing interleukin-22 in ankylosing spondylitis. J Rheum Dis. 27:61–7. DOI:
10.4078/jrd.2020.27.1.61.

2. Baraliakos X, Listing J, Rudwaleit M, Haibel H, Brandt J, Sieper J, et al. 2007; Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis. 66:910–5. DOI:
10.1136/ard.2006.066415. PMID:
17329306. PMCID:
PMC1955120.

3. van Tubergen A, Ramiro S, van der Heijde D, Dougados M, Mielants H, Landewé R. 2012; Development of new syndesmophytes and bridges in ankylosing spondylitis and their predictors: a longitudinal study. Ann Rheum Dis. 71:518–23. DOI:
10.1136/annrheumdis-2011-200411. PMID:
21989544.

4. Landewé R, Dougados M, Mielants H, van der Tempel H, van der Heijde D. 2009; Physical function in ankylosing spondylitis is independently determined by both disease activity and radiographic damage of the spine. Ann Rheum Dis. 68:863–7. DOI:
10.1136/ard.2008.091793. PMID:
18628283.
5. Machado P, Landewé R, Braun J, Hermann KG, Baker D, van der Heijde D. 2010; Both structural damage and inflammation of the spine contribute to impairment of spinal mobility in patients with ankylosing spondylitis. Ann Rheum Dis. 69:1465–70. DOI:
10.1136/ard.2009.124206. PMID:
20498215.

6. Schett G, Rudwaleit M. 2010; Can we stop progression of ankylosing spondylitis? Best Pract Res Clin Rheumatol. 24:363–71. DOI:
10.1016/j.berh.2010.01.005. PMID:
20534370.

7. Sieper J, Appel H, Braun J, Rudwaleit M. 2008; Critical appraisal of assessment of structural damage in ankylosing spondylitis: implications for treatment outcomes. Arthritis Rheum. 58:649–56. DOI:
10.1002/art.23260. PMID:
18311819.

8. Lories RJ, Luyten FP, de Vlam K. 2009; Progress in spondy-larthritis. Mechanisms of new bone formation in spondy-loarthritis. Arthritis Res Ther. 11:221. DOI:
10.1186/ar2642. PMID:
19439035. PMCID:
PMC2688182.

9. Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Østergaard M, Lambert RG. 2009; Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum. 60:93–102. DOI:
10.1002/art.24132. PMID:
19116919.

10. van der Heijde D, Machado P, Braun J, Hermann KG, Baraliakos X, Hsu B, et al. 2012; MRI inflammation at the vertebral unit only marginally predicts new syndesmophyte formation: a multilevel analysis in patients with ankylosing spondylitis. Ann Rheum Dis. 71:369–73. DOI:
10.1136/annrheumdis-2011-200208. PMID:
21979001.

11. Pedersen SJ, Chiowchanwisawakit P, Lambert RG, Østergaard M, Maksymowych WP. 2011; Resolution of inflammation following treatment of ankylosing spondylitis is associated with new bone formation. J Rheumatol. 38:1349–54. DOI:
10.3899/jrheum.100925. PMID:
21459937.

12. Chiowchanwisawakit P, Lambert RG, Conner-Spady B, Maksymowych WP. 2011; Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum. 63:2215–25. DOI:
10.1002/art.30393. PMID:
21484769.

13. Poddubnyy D, Haibel H, Listing J, Märker-Hermann E, Zeidler H, Braun J, et al. 2012; Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum. 64:1388–98. DOI:
10.1002/art.33465. PMID:
22127957.

14. Poddubnyy D, Rudwaleit M, Haibel H, Listing J, Märker- Hermann E, Zeidler H, et al. 2011; Rates and predictors of radiographic sacroiliitis progression over 2 years in patients with axial spondyloarthritis. Ann Rheum Dis. 70:1369–74. DOI:
10.1136/ard.2010.145995. PMID:
21622969.

15. van der Heijde D, Landewé R, Baraliakos X, Houben H, van Tubergen A, Williamson P, et al. 2008; Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum. 58:3063–70. DOI:
10.1002/art.23901. PMID:
18821688.

16. van der Heijde D, Landewé R, Einstein S, Ory P, Vosse D, Ni L, et al. 2008; Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum. 58:1324–31. DOI:
10.1002/art.23471. PMID:
18438853.

17. van der Heijde D, Salonen D, Weissman BN, Landewé R, Maksymowych WP, Kupper H, et al. 2009; Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther. 11:R127. DOI:
10.1186/ar2794. PMID:
19703304. PMCID:
PMC2745811.

18. Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH, et al. 2013; The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 65:2645–54. DOI:
10.1002/art.38070. PMID:
23818109. PMCID:
PMC3974160.
19. Koo BS, Oh JS, Park SY, Shin JH, Ahn GY, Lee S, et al. 2020; Tumour necrosis factor inhibitors slow radiographic progression in patients with ankylosing spondylitis: 18-year real-world evidence. Ann Rheum Dis. 79:1327–32. DOI:
10.1136/annrheumdis-2019-216741. PMID:
32660979.

20. Park JW, Kim MJ, Lee JS, Ha YJ, Park JK, Kang EH, et al. 2019; Impact of tumor necrosis factor inhibitor versus nonsteroidal antiinflammatory drug treatment on radiographic progression in early ankylosing spondylitis: its relationship to inflammation control during treatment. Arthritis Rheumatol. 71:82–90. DOI:
10.1002/art.40661. PMID:
29984487. PMCID:
PMC6587468.

21. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, et al. 2007; Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 13:156–63. DOI:
10.1038/nm1538. PMID:
17237793.

22. Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssière B, et al. 2006; Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res. 21:934–45. DOI:
10.1359/jbmr.060311. PMID:
16753024.

23. Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, et al. 2011; Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res. 26:2610–21. DOI:
10.1002/jbmr.472. PMID:
21773994.

24. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, et al. 2005; Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet. 37:945–52. DOI:
10.1038/ng1614. PMID:
16056226.

25. Jo S, Nam B, Lee YL, Park H, Weon S, Choi SH, et al. 2021; The TNF-NF-κB-DKK1 axis promoted bone formation in the enthesis of ankylosing spondylitis. J Rheum Dis. 28:216–24. DOI:
10.4078/jrd.2021.28.4.216.

26. Zhou B, Peng K, Wang G, Chen W, Liu P, Chen F, et al. 2020; miR‑483‑3p promotes the osteogenesis of human osteoblasts by targeting Dikkopf 2 (DKK2) and the Wnt signaling pathway. Int J Mol Med. 46:1571–81. DOI:
10.3892/ijmm.2020.4694. PMID:
32945363. PMCID:
PMC7447299.
27. Rodda SJ, McMahon AP. 2006; Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 133:3231–44. DOI:
10.1242/dev.02480. PMID:
16854976.
28. Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, et al. 2020; DKK1 induced by 1,25D3 is required for the mineralization of osteoblasts. Cells. 9:236. DOI:
10.3390/cells9010236. PMID:
31963554. PMCID:
PMC7017072.

29. Nam B, Park H, Lee YL, Oh Y, Park J, Kim SY, et al. 2020; TGFβ1 suppressed matrix mineralization of osteoblasts differentiation by regulating SMURF1-C/EBPβ-DKK1 axis. Int J Mol Sci. 21:9771. DOI:
10.3390/ijms21249771. PMID:
33371439. PMCID:
PMC7767413.
