3. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.
Nat Microbiol 2020;5(4):536-44.DOI:
10.1038/s41564-020-0695-z. PMID:
32123347. PMCID:
PMC7095448.
4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
Nature 2020;579(7798):270-3.DOI:
10.1038/s41586-020-2012-7. PMID:
32015507. PMCID:
PMC7095418.
5. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV.
J Med Virol 2020;92(4):433-40.DOI:
10.1002/jmv.25682. PMID:
31967321. PMCID:
PMC7138088.
9. Behrens EM, Koretzky GA. Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era.
Arthritis Rheumatol 2017;69(6):1135-43.DOI:
10.1002/art.40071. PMID:
28217930.
11. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice.
Cell Host Microbe 2016;19(2):181-93.DOI:
10.1016/j.chom.2016.01.007. PMID:
26867177. PMCID:
PMC4752723.
12. Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections.
J Interferon Cytokine Res 2015;35(4):252-64.DOI:
10.1089/jir.2014.0227. PMID:
25714109. PMCID:
PMC4389918.
13. Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity.
Nat Rev Immunol 2013;13(12):875-87.DOI:
10.1038/nri3547. PMID:
24157572. PMCID:
PMC4096436.
14. Chi Y, Ge Y, Wu B, Zhang W, Wu T, Wen T, et al. Serum Cytokine and Chemokine Profile in Relation to the Severity of Coronavirus Disease 2019 in China.
J Infect Dis 2020;222(5):746-54.DOI:
10.1093/infdis/jiaa363. PMID:
32563194. PMCID:
PMC7337752.
16. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing.
Nat Rev Immunol 2014;14(9):585-600.DOI:
10.1038/nri3707. PMID:
25145755. PMCID:
PMC4281037.
18. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members.
Immunity 2011;34(2):149-62.DOI:
10.1016/j.immuni.2011.02.012. PMID:
21349428.
20. Orlov M, Wander PL, Morrell ED, Mikacenic C, Wurfel MM. A Case for Targeting Th17 Cells and IL-17A in SARS-CoV-2 Infections.
J Immunol 2020;205(4):892-8.DOI:
10.4049/jimmunol.2000554. PMID:
32651218. PMCID:
PMC7486691.
23. Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm.
Immunotherapy 2016;8(8):959-70.DOI:
10.2217/imt-2016-0020. PMID:
27381687.
24. Robins E, Zheng M, Ni Q, Liu S, Liang C, Zhang B, et al. Conversion of effector CD4(+) T cells to a CD8(+) MHC II-recognizing lineage.
Cell Mol Immunol 2021;18(1):150-61.DOI:
10.1038/s41423-019-0347-5. PMID:
32066854.
25. Brevi A, Cogrossi LL, Grazia G, Masciovecchio D, Impellizzieri D, Lacanfora L, et al. Much More Than IL-17A: Cytokines of the IL-17 Family Between Microbiota and Cancer.
Front Immunol 2020;11:565470.DOI:
10.3389/fimmu.2020.565470. PMID:
33244315. PMCID:
PMC7683804.
26. Casillo GM, Mansour AA, Raucci F, Saviano A, Mascolo N, Iqbal AJ, et al. Could IL-17 represent a new therapeutic target for the treatment and/or management of COVID-19-related respiratory syndrome?
Pharmacol Res 2020;156:104791.DOI:
10.1016/j.phrs.2020.104791. PMID:
32302707. PMCID:
PMC7194796.
27. Matsuzaki G, Umemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s.
Microbiol Immunol 2018;62(1):1-13.DOI:
10.1111/1348-0421.12560. PMID:
29205464.
29. Schwandner R, Yamaguchi K, Cao Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction.
J Exp Med 2000;191(7):1233-40.DOI:
10.1084/jem.191.7.1233. PMID:
10748240. PMCID:
PMC2193168.
32. Li HX, Zhao W, Shi Y, Li YN, Zhang LS, Zhang HQ, et al. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.
Tumour Biol 2015;36(11):8671-8.DOI:
10.1007/s13277-015-3534-8. PMID:
26044560.
33. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases.
Int Immunopharmacol 2020;80:106210.DOI:
10.1016/j.intimp.2020.106210. PMID:
31972425.
34. Chen Z, Laurence A, O'Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation.
Semin Immunol 2007;19(6):400-8.DOI:
10.1016/j.smim.2007.10.015. PMID:
18166487. PMCID:
PMC2323678.
35. Camporeale A, Poli V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity?
Front Biosci (Landmark Ed) 2012;17:2306-26.DOI:
10.2741/4054. PMID:
22652781.
37. Nishihara M, Ogura H, Ueda N, Tsuruoka M, Kitabayashi C, Tsuji F, et al. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state.
Int Immunol 2007;19(6):695-702.DOI:
10.1093/intimm/dxm045. PMID:
17493959.
38. Zhou L, Ivanov, II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.
Nat Immunol 2007;8(9):967-74.DOI:
10.1038/ni1488. PMID:
17581537.
39. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells.
J Biol Chem 2007;282(13):9358-63.DOI:
10.1074/jbc.C600321200. PMID:
17277312.
40. Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity.
J Immunol 2007;179(7):4313-7.DOI:
10.4049/jimmunol.179.7.4313. PMID:
17878325.
41. Krstic J, Obradovic H, Kukolj T, Mojsilovic S, Okic-Dordevic I, Bugarski D, et al. An Overview of Interleukin-17A and Interleukin-17 Receptor A Structure, Interaction and Signaling.
Protein Pept Lett 2015;22(7):570-8.DOI:
10.2174/0929866522666150520145554. PMID:
25990083.
42. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib.
J Microbiol Immunol Infect 2020;53(3):368-70.DOI:
10.1016/j.jmii.2020.03.005. PMID:
32205092. PMCID:
PMC7156211.
43. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome.
Lancet Respir Med 2020;8(4):420-2.DOI:
10.1016/S2213-2600(20)30076-X.
44. Wiche Salinas TR, Zheng B, Routy JP, Ancuta P. Targeting the interleukin-17 pathway to prevent acute respiratory distress syndrome associated with SARS-CoV-2 infection.
Respirology 2020;25(8):797-9.DOI:
10.1111/resp.13875. PMID:
32557955. PMCID:
PMC7323293.
45. Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM. Interleukin-17A Is Associated With Alveolar Inflammation and Poor Outcomes in Acute Respiratory Distress Syndrome.
Crit Care Med 2016;44(3):496-502.DOI:
10.1097/CCM.0000000000001409. PMID:
26540401. PMCID:
PMC4764422.
46. Muir R, Osbourn M, Dubois AV, Doran E, Small DM, Monahan A, et al. Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome.
Am J Respir Crit Care Med 2016;193(4):407-16.DOI:
10.1164/rccm.201410-1782OC. PMID:
26488187.
47. Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile.
Cytokine 2018;104:8-13.DOI:
10.1016/j.cyto.2018.01.025. PMID:
29414327. PMCID:
PMC7129230.
48. Mangodt TC, Van Herck MA, Nullens S, Ramet J, De Dooy JJ, Jorens PG, et al. The role of Th17 and Treg responses in the pathogenesis of RSV infection.
Pediatr Res 2015;78(5):483-91.DOI:
10.1038/pr.2015.143. PMID:
26267154.
49. De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia.
Nat Commun 2020;11(1):3434.DOI:
10.1038/s41467-020-17292-4. PMID:
32632085. PMCID:
PMC7338513.
51. Gonzalez SM, Siddik AB, Su RC. Regulated Intramembrane Proteolysis of ACE2: A Potential Mechanism Contributing to COVID-19 Pathogenesis?
Front Immunol 2021;12:612807.DOI:
10.3389/fimmu.2021.612807. PMID:
34163462. PMCID:
PMC8215698.
52. Dubash S, Bridgewood C, McGonagle D, Marzo-Ortega H. The advent of IL-17A blockade in ankylosing spondylitis: secukinumab, ixekizumab and beyond.
Expert Rev Clin Immunol 2019;15(2):123-34.DOI:
10.1080/1744666X.2019.1561281. PMID:
30576610.
53. Song J, Zeng M, Wang H, Qin C, Hou HY, Sun ZY, et al. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19.
Allergy 2021;76(2):483-96.DOI:
10.1111/all.14517. PMID:
32716553.
54. Han K, Blair RV, Iwanaga N, Liu F, Russell-Lodrigue KE, Qin Z, et al. Lung Expression of Human Angiotensin- Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection.
Am J Respir Cell Mol Biol 2021;64(1):79-88.DOI:
10.1165/rcmb.2020-0354OC. PMID:
32991819. PMCID:
PMC7781002.
55. Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, et al. A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to Pseudomonas aeruginosa Lung Infection in Mice.
J Immunol 2019;203(11):3000-12.DOI:
10.4049/jimmunol.1900579. PMID:
31645418. PMCID:
PMC7458157.
56. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19).
J Pathol 2020;251(3):228-48.DOI:
10.1002/path.5471. PMID:
32418199. PMCID:
PMC7276767.
57. Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19.
Sci Rep 2021;11(1):8562.DOI:
10.1038/s41598-021-88130-w. PMID:
33879826. PMCID:
PMC8058064.
58. Saeed S, Tadic M, Larsen TH, Grassi G, Mancia G. Coronavirus disease 2019 and cardiovascular complications: focused clinical review.
J Hypertens 2021;39(7):1282-92.DOI:
10.1097/HJH.0000000000002819. PMID:
33687179.
59. Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation.
Nat Rev Cardiol 2021;18(3):194-209.DOI:
10.1038/s41569-020-00469-1. PMID:
33214651. PMCID:
PMC7675396.
60. Carethers JM. Insights into disparities observed with COVID-19.
J Intern Med 2021;289(4):463-73.DOI:
10.1111/joim.13199. PMID:
33164230.
61. Figliozzi S, Masci PG, Ahmadi N, Tondi L, Koutli E, Aimo A, et al. Predictors of adverse prognosis in COVID-19: A systematic review and meta-analysis.
Eur J Clin Invest 2020;50(10):e13362.DOI:
10.1111/eci.13362. PMID:
32726868.
62. Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong?
Microb Pathog 2021;153:104799.DOI:
10.1016/j.micpath.2021.104799. PMID:
33609650. PMCID:
PMC7889464.
63. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY.
Nature 2020;584(7821):430-6.DOI:
10.1038/s41586-020-2521-4. PMID:
32640463. PMCID:
PMC7611074.
64. Lee JS, Lee WW, Kim SH, Kang Y, Lee N, Shin MS, et al. Age-associated alteration in naive and memory Th17 cell response in humans.
Clin Immunol 2011;140(1):84-91.DOI:
10.1016/j.clim.2011.03.018. PMID:
21489886. PMCID:
PMC3115516.
65. Li Q, Ding S, Wang YM, Xu X, Shen Z, Fu R, et al. Age-associated alteration in Th17 cell response is related to endothelial cell senescence and atherosclerotic cerebral infarction. Am J Transl Res 2017;9(11):5160-8.
66. Ouyang X, Yang Z, Zhang R, Arnaboldi P, Lu G, Li Q, et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis.
Cell Immunol 2011;266(2):208-17.DOI:
10.1016/j.cellimm.2010.10.007. PMID:
21074754. PMCID:
PMC3006034.
69. Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: Possible mechanisms.
Life Sci 2020;253:117723.DOI:
10.1016/j.lfs.2020.117723. PMID:
32360126. PMCID:
PMC7194533.
73. Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19.
Nat Rev Nephrol 2021;17(1):46-64.DOI:
10.1038/s41581-020-00357-4. PMID:
33077917. PMCID:
PMC7570423.
74. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction.
Hypertension 2010;55(2):500-7.DOI:
10.1161/HYPERTENSIONAHA.109.145094. PMID:
20038749. PMCID:
PMC2819301.
75. Du YN, Tang XF, Xu L, Chen WD, Gao PJ, Han WQ. SGK1-FoxO1 Signaling Pathway Mediates Th17/Treg Imbalance and Target Organ Inflammation in Angiotensin II-Induced Hypertension.
Front Physiol 2018;9:1581.DOI:
10.3389/fphys.2018.01581. PMID:
30524295. PMCID:
PMC6262360.
76. Ji Q, Cheng G, Ma N, Huang Y, Lin Y, Zhou Q, et al. Circulating Th1, Th2, and Th17 Levels in Hypertensive Patients.
Dis Markers 2017;2017:7146290.DOI:
10.1155/2017/7146290. PMID:
28757677. PMCID:
PMC5516715.
77. Calcaterra V, Croce S, Vinci F, De Silvestri A, Cordaro E, Regalbuto C, et al. Th17 and Treg Balance in Children With Obesity and Metabolically Altered Status.
Front Pediatr 2020;8:591012.DOI:
10.3389/fped.2020.591012. PMID:
33330284. PMCID:
PMC7710792.
78. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias.
Eur J Immunol 2009;39(9):2629-35.DOI:
10.1002/eji.200838893. PMID:
19662632.
80. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women.
Int J Obes (Lond) 2009;33(1):151-6.DOI:
10.1038/ijo.2008.216. PMID:
18982006.
81. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation.
Obesity (Silver Spring) 2020;28(7):1195-9.DOI:
10.1002/oby.22831. PMID:
32271993. PMCID:
PMC7262326.
83. Endo Y, Asou HK, Matsugae N, Hirahara K, Shinoda K, Tumes DJ, et al. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1.
Cell Rep 2015;12(6):1042-55.DOI:
10.1016/j.celrep.2015.07.014. PMID:
26235623.
84. Vargas-Vazquez A, Bello-Chavolla OY, Ortiz-Brizuela E, Campos-Munoz A, Mehta R, Villanueva-Reza M, et al. Impact of undiagnosed type 2 diabetes and pre-diabetes on severity and mortality for SARS-CoV-2 infection.
BMJ Open Diabetes Res Care 2021;9(1):e002026.DOI:
10.1136/bmjdrc-2020-002026. PMID:
33593750. PMCID:
PMC7887863.
85. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis.
Eur Respir J 2020;55(5).DOI:
10.1183/13993003.01227-2020. PMID:
32341104. PMCID:
PMC7236831.
86. Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System.
Am J Med Sci 2016;351(2):201-11.DOI:
10.1016/j.amjms.2015.11.011. PMID:
26897277.
88. Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus.
Biomed Pharmacother 2018;101:287-92.DOI:
10.1016/j.biopha.2018.02.103. PMID:
29499402.
89. Ryba-Stanislawowska M, Skrzypkowska M, Mysliwiec M, Mysliwska J. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes.
Hum Immunol 2013;74(6):701-7.DOI:
10.1016/j.humimm.2013.01.024. PMID:
23395729.
90. Zhang C, Xiao C, Wang P, Xu W, Zhang A, Li Q, et al. The alteration of Th1/Th2/Th17/Treg paradigm in patients with type 2 diabetes mellitus: Relationship with diabetic nephropathy.
Hum Immunol 2014;75(4):289-96.DOI:
10.1016/j.humimm.2014.02.007. PMID:
24530745.
91. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes.
Mol Cell Biochem 2011;351(1-2):197-205.DOI:
10.1007/s11010-011-0727-3. PMID:
21249428.
92. Baldeon RL, Weigelt K, de Wit H, Ozcan B, van Oudenaren A, Sempertegui F, et al. Decreased serum level of miR-146a as sign of chronic inflammation in type 2 diabetic patients.
PLoS One 2014;9(12):e115209.DOI:
10.1371/journal.pone.0115209. PMID:
25500583. PMCID:
PMC4264887.
=93. Abate BB, Kassie AM, Kassaw MW, Aragie TG, Masresha SA. Sex difference in coronavirus disease (COVID-19): a systematic review and meta-analysis.
BMJ Open 2020;10(10):e040129.DOI:
10.1136/bmjopen-2020-040129. PMID:
33028563. PMCID:
PMC7539579.
94. Chu S, Sun R, Gu X, Chen L, Liu M, Guo H, et al. Inhibition of Sphingosine-1-Phosphate-Induced Th17 Cells Ameliorates Alcohol-Associated Steatohepatitis in Mice.
Hepatology 2021;73(3):952-67.DOI:
10.1002/hep.31321. PMID:
32418220.
95. Baskara I, Kerbrat S, Dagouassat M, Nguyen HQ, Guillot-Delost M, Surenaud M, et al. Cigarette smoking induces human CCR6(+)Th17 lymphocytes senescence and VEGF-A secretion.
Sci Rep 2020;10(1):6488.DOI:
10.1038/s41598-020-63613-4. PMID:
32300208. PMCID:
PMC7162978.
96. Haitao T, Vermunt JV, Abeykoon J, Ghamrawi R, Gunaratne M, Jayachandran M, et al. COVID-19 and Sex Differences: Mechanisms and Biomarkers.
Mayo Clin Proc 2020;95(10):2189-203.DOI:
10.1016/j.mayocp.2020.07.024. PMID:
33012349. PMCID:
PMC7402208.
97. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes.
Nature 2020;588(7837):315-20.DOI:
10.1038/s41586-020-2700-3. PMID:
32846427. PMCID:
PMC7725931.
98. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan.
J Allergy Clin Immunol 2020;146(1):110-8.DOI:
10.1016/j.jaci.2020.04.006. PMID:
32294485. PMCID:
PMC7152876.
99. Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells.
J Immunol 2011;187(4):1778-87.DOI:
10.4049/jimmunol.1003919. PMID:
21768398. PMCID:
PMC3155957.
100. Chen RY, Fan YM, Zhang Q, Liu S, Li Q, Ke GL, et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORgammaT transcription by recruiting the ERalpha/REA complex to estrogen response elements of the RORgammaT promoter.
J Immunol 2015;194(8):4019-28.DOI:
10.4049/jimmunol.1400806. PMID:
25769926. PMCID:
PMC4390502.
101. Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis.
PLoS One 2012;7(9):e44552.DOI:
10.1371/journal.pone.0044552. PMID:
22970248. PMCID:
PMC3438183.
102. Relloso M, Aragoneses-Fenoll L, Lasarte S, Bourgeois C, Romera G, Kuchler K, et al. Estradiol impairs the Th17 immune response against Candida albicans.
J Leukoc Biol 2012;91(1):159-65.DOI:
10.1189/jlb.1110645. PMID:
21965175.
103. Li Z, Yue Y, Xiong S. Distinct Th17 inductions contribute to the gender bias in CVB3-induced myocarditis.
Cardiovasc Pathol 2013;22(5):373-82.DOI:
10.1016/j.carpath.2013.02.004. PMID:
23523188.
104. AbdulHussain G, Azizieh F, Makhseed M, Raghupathy R. Effects of Progesterone, Dydrogesterone and Estrogen on the Production of Th1/Th2/Th17 Cytokines by Lymphocytes from Women with Recurrent Spontaneous Miscarriage.
J Reprod Immunol 2020;140:103132.DOI:
10.1016/j.jri.2020.103132. PMID:
32380371.
105. Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesterone, Immunomodulation, and COVID-19 Outcomes.
Endocrinology 2020;161(9):bqaa127.DOI:
10.1210/endocr/bqaa127. PMID:
32730568. PMCID:
PMC7438701.
106. Cravedi P, Mothi SS, Azzi Y, Haverly M, Farouk SS, Perez-Saez MJ, et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium.
Am J Transplant 2020;20(11):3140-8.DOI:
10.1111/ajt.16185. PMID:
32649791. PMCID:
PMC7405285.
108. Henry BM, Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection.
Int Urol Nephrol 2020;52(6):1193-4.DOI:
10.1007/s11255-020-02451-9. PMID:
32222883. PMCID:
PMC7103107.
109. Hansrivijit P, Qian C, Boonpheng B, Thongprayoon C, Vallabhajosyula S, Cheungpasitporn W, et al. Incidence of acute kidney injury and its association with mortality in patients with COVID-19: a meta-analysis.
J Investig Med 2020;68(7):1261-70.DOI:
10.1136/jim-2020-001407. PMID:
32655013. PMCID:
PMC7371487.
111. Coto E, Gomez J, Suarez B, Tranche S, Diaz-Corte C, Ortiz A, et al. Association between the IL17RA rs4819554 polymorphism and reduced renal filtration rate in the Spanish RENASTUR cohort.
Hum Immunol 2015;76(2-3):75-8.DOI:
10.1016/j.humimm.2015.01.027. PMID:
25636567.
112. Cortvrindt C, Speeckaert R, Moerman A, Delanghe JR, Speeckaert MM. The role of interleukin-17A in the pathogenesis of kidney diseases.
Pathology 2017;49(3):247-58.DOI:
10.1016/j.pathol.2017.01.003. PMID:
28291548.
113. Chung BH, Kim KW, Sun IO, Choi SR, Park HS, Jeon EJ, et al. Increased interleukin-17 producing effector memory T cells in the end-stage renal disease patients.
Immunol Lett 2012;141(2):181-9.DOI:
10.1016/j.imlet.2011.10.002. PMID:
22004873.
114. Lang CL, Wang MH, Hung KY, Hsu SH, Chiang CK, Lu KC. Correlation of interleukin-17-producing effector memory T cells and CD4+CD25+Foxp3 regulatory T cells with the phosphate levels in chronic hemodialysis patients.
Scientific WorldJournal 2014;2014:593170.DOI:
10.1155/2014/593170. PMID:
24558316. PMCID:
PMC3914580.
115. Rafael-Vidal C, Perez N, Altabas I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A Promising Strategy in the Treatment of Systemic Rheumatic Diseases.
Int J Mol Sci 2020;21(19):7100.DOI:
10.3390/ijms21197100. PMID:
32993066. PMCID:
PMC7582977.
116. Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies.
J Allergy Clin Immunol 2017;140(3):645-53.DOI:
10.1016/j.jaci.2017.07.004. PMID:
28887948. PMCID:
PMC5600287.
117. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti- inflammatory treatments.
Lancet Infect Dis 2020;20(4):400-2.DOI:
10.1016/S1473-3099(20)30132-8.
118. Petrone L, Petruccioli E, Alonzi T, Vanini V, Cuzzi G, Najafi Fard S, et al. In-vitro evaluation of the immunomodulatory effects of Baricitinib: Implication for COVID-19 therapy.
J Infect 2021;82(4):58-66.DOI:
10.1016/j.jinf.2021.02.023. PMID:
33639176. PMCID:
PMC7904476.
119. Goker Bagca B, Biray Avci C. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19.
Cytokine Growth Factor Rev 2020;54:51-62.DOI:
10.1016/j.cytogfr.2020.06.013. PMID:
32636055. PMCID:
PMC7305753.
120. Kale SD, Mehrkens BN, Stegman MM, Kastelberg B, Carnes H, McNeill RJ, et al. "Small" Intestinal Immunopathology Plays a "Big" Role in Lethal Cytokine Release Syndrome, and Its Modulation by Interferon-gamma, IL-17A, and a Janus Kinase Inhibitor.
Front Immunol 2020;11:1311.DOI:
10.3389/fimmu.2020.01311. PMID:
32676080. PMCID:
PMC7333770.