2. Koczkodaj P, Sulkowska U, Gotlib J, Manczuk M. 2019; Breast cancer mortality trends in Europe among women in perimenopausal and postmenopausal age (45+). Arch Med Sci. 16:146–56. DOI:
10.5114/aoms.2019.85198. PMID:
32051718. PMCID:
PMC6963145.
3. Guo F, Kuo YF, Shih YC, Giordano SH, Berenson AB. 2018; Trends in breast cancer mortality by stage at diagnosis among young women in the United States. Cancer. 124:3500–9. DOI:
10.1002/cncr.31638. PMID:
30189117. PMCID:
PMC6191354.
4. Montero AJ, Rouzier R, Lluch-Hernandez A, et al. 2004; Long- term survival benefit of anthracycline-containing adjuvant chemotherapy in breast cancer patients with ten or more positive lymph nodes: a multi-institutional retrospective study. Breast Cancer Res Treat. 88(Suppl 1):S61.
5. Zare N, Ghanbari S, Salehi A. 2013; Effects of two chemotherapy regimens, anthracycline-based and CMF, on breast cancer disease free survival in the Eastern Mediterranean Region and Asia: a meta-analysis approach for survival curves. Asian Pac J Cancer Prev. 14:2013–7. DOI:
10.7314/APJCP.2013.14.3.2013. PMID:
23679310.
6. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. 1991; Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA. 266:1672–7. DOI:
10.1001/jama.1991.03470120074036. PMID:
1886191.
7. Thomas GR, McDonald MA, Day J, et al. 2016; A matched cohort study of patients with end-stage heart failure from anthracycline- induced cardiomyopathy requiring advanced cardiac support. Am J Cardiol. 118:1539–44. DOI:
10.1016/j.amjcard.2016.08.020. PMID:
27639686.
8. Bradshaw PT, Stevens J, Khankari N, Teitelbaum SL, Neugut AI, Gammon MD. 2016; Cardiovascular disease mortality among breast cancer survivors. Epidemiology. 27:6–13. DOI:
10.1097/EDE.0000000000000394. PMID:
26414938. PMCID:
PMC4666721.
9. Gernaat SA, Ho PJ, Rijnberg N, et al. 2017; Risk of death from cardiovascular disease following breast cancer in Southeast Asia: a prospective cohort study. Sci Rep. 7:1365. DOI:
10.1038/s41598-017-01540-7. PMID:
28465587. PMCID:
PMC5430976.
10. Armenian SH, Xu L, Ky B, et al. 2016; Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol. 34:1122–30. DOI:
10.1200/JCO.2015.64.0409. PMID:
26834065. PMCID:
PMC7357493.
12. Vaitiekus D, Muckiene G, Vaitiekiene A, et al. 2020; Impact of arterial hypertension on doxorubicin-based chemotherapy- induced subclinical cardiac damage in breast cancer patients. Cardiovasc Toxicol. 20:321–7. DOI:
10.1007/s12012-019-09556-3. PMID:
31782105.
13. Moreno M, Rodriguez C, Lengacher C. 2021; Breast cancer and diabetes mellitus type 2: state of the science. Oncol Nurs Forum. 48:21–22.
14. Wu AH, Kurian AW, Kwan ML, et al. 2015; Diabetes and other comorbidities in breast cancer survival by race/ethnicity: the California Breast Cancer Survivorship Consortium (CBCSC). Cancer Epidemiol Biomarkers Prev. 24:361–8. DOI:
10.1158/1055-9965.EPI-14-1140. PMID:
25425578. PMCID:
PMC4523272.
15. Russo G, Cioffi G, Gori S, et al. 2014; Role of hypertension on new onset congestive heart failure in patients receiving trastuzumab therapy for breast cancer. J Cardiovasc Med (Hagerstown). 15:141–6. DOI:
10.2459/JCM.0b013e328365afb5. PMID:
24534802.
16. Courneya KS, Mackey JR, Bell GJ, Jones LW, Field CJ, Fairey AS. 2003; Randomized controlled trial of exercise training in postmenopausal breast cancer survivors: cardiopulmonary and quality of life outcomes. J Clin Oncol. 21:1660–8. DOI:
10.1200/JCO.2003.04.093. PMID:
12721239.
17. Courneya KS, Segal RJ, Mackey JR, et al. 2007; Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol. 25:4396–404. DOI:
10.1200/JCO.2006.08.2024. PMID:
17785708.
18. Lee K, Tripathy D, Demark-Wahnefried W, et al. 2019; Effect of aerobic and resistance exercise intervention on cardiovascular disease risk in women with early-stage breast cancer: a randomized clinical trial. JAMA Oncol. 5:710–4. DOI:
10.1001/jamaoncol.2019.0038. PMID:
30920602. PMCID:
PMC6512455.
19. Diaz-Balboa E, Gonzalez-Salvado V, Rodriguez-Romero B, et al. 2021; A randomized trial to evaluate the impact of exercise- based cardiac rehabilitation for the prevention of chemotherapy- induced cardiotoxicity in patients with breast cancer: ONCORE study protocol. BMC Cardiovasc Disord. 21:165. DOI:
10.1186/s12872-021-01970-2. PMID:
33827450. PMCID:
PMC8025895.
20. Schmitz KH, Troxel AB, Dean LT, et al. 2019; Effect of home-based exercise and weight loss programs on breast cancer-related lymphedema outcomes among overweight breast cancer survivors: the WISER survivor randomized clinical trial. JAMA Oncol. 5:1605–13. DOI:
10.1001/jamaoncol.2019.2109. PMID:
31415063. PMCID:
PMC6696732.
21. Leach HJ, Danyluk JM, Nishimura KC, Culos-Reed SN. 2015; Evaluation of a community-based exercise program for breast cancer patients undergoing treatment. Cancer Nurs. 38:417–25. DOI:
10.1097/NCC.0000000000000217. PMID:
25539165.
22. Currie KD, Bailey KJ, Jung ME, McKelvie RS, MacDonald MJ. 2015; Effects of resistance training combined with moderate- intensity endurance or low-volume high-intensity interval exercise on cardiovascular risk factors in patients with coronary artery disease. J Sci Med Sport. 18:637–42. DOI:
10.1016/j.jsams.2014.09.013. PMID:
25308628.
23. Schmid D, Leitzmann MF. 2014; Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 25:1293–311. DOI:
10.1093/annonc/mdu012. PMID:
24644304.
24. Campbell KL, Winters-Stone KM, Wiskemann J, et al. 2019; Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 51:2375–90. DOI:
10.1249/MSS.0000000000002116. PMID:
31626055.
25. Lee K, Zhou J, Norris MK, Chow C, Dieli-Conwright CM. 2020; Prehabilitative exercise for the enhancement of physical, psychosocial, and biological outcomes among patients diagnosed with cancer. Curr Oncol Rep. 22:71. DOI:
10.1007/s11912-020-00932-9. PMID:
32537699.
26. Brahmbhatt P, Sabiston CM, Lopez C, et al. 2020; Feasibility of prehabilitation prior to breast cancer surgery: a mixed-methods study. Front Oncol. 10:571091. DOI:
10.3389/fonc.2020.571091. PMID:
33072603. PMCID:
PMC7544900.
28. Yang A, Sokolof J, Gulati A. 2018; The effect of preoperative exercise on upper extremity recovery following breast cancer surgery: a systematic review. Int J Rehabil Res. 41:189–96. DOI:
10.1097/MRR.0000000000000288. PMID:
29683834.
29. Nyrop KA, Deal AM, Choi SK, et al. 2018; Measuring and understanding adherence in a home-based exercise intervention during chemotherapy for early breast cancer. Breast Cancer Res Treat. 168:43–55. DOI:
10.1007/s10549-017-4565-1. PMID:
29124455.
30. Vincent F, Labourey JL, Leobon S, et al. 2011; Feasibility of home-adapted aerobic exercise training on peak oxygen consumption and fatigue in breast cancer patients during adjuvant chemotherapy. Eur J Cancer. 47:S387. DOI:
10.1016/S0959-8049(11)71632-X.
31. Lee K, Kang I, Mack WJ, et al. 2019; Feasibility of high intensity interval training in patients with breast cancer undergoing anthracycline chemotherapy: a randomized pilot trial. BMC Cancer. 19:653. DOI:
10.1186/s12885-019-5887-7. PMID:
31269914. PMCID:
PMC6610838.
32. MacVicar MG, Winningham ML, Nickel JL. 1989; Effects of aerobic interval training on cancer patients' functional capacity. Nurs Res. 38:348–51. DOI:
10.1097/00006199-198911000-00007. PMID:
2587289.
33. Segal R, Evans W, Johnson D, et al. 2001; Structured exercise improves physical functioning in women with stages I and II breast cancer: results of a randomized controlled trial. J Clin Oncol. 19:657–65. DOI:
10.1200/JCO.2001.19.3.657. PMID:
11157015.
34. Jones LW, Fels DR, West M, et al. 2013; Modulation of circulating angiogenic factors and tumor biology by aerobic training in breast cancer patients receiving neoadjuvant chemotherapy. Cancer Prev Res (Phila). 6:925–37. DOI:
10.1158/1940-6207.CAPR-12-0416. PMID:
23842792. PMCID:
PMC3800005.
35. Travier N, Velthuis MJ, Steins Bisschop CN, et al. 2015; Effects of an 18-week exercise programme started early during breast cancer treatment: a randomised controlled trial. BMC Med. 13:121. DOI:
10.1186/s12916-015-0362-z. PMID:
26050790. PMCID:
PMC4461906.
36. Hojan K, Procyk D, Horynska-Kestowicz D, Leporowska E, Litwiniuk M. 2020; The preventive role of regular physical training in ventricular remodeling, serum cardiac markers, and exercise performance changes in breast cancer in women undergoing trastuzumab therapy: an REH-HER study. J Clin Med. 9:1379. DOI:
10.3390/jcm9051379. PMID:
32392882. PMCID:
PMC7291322.
37. Mijwel S, Backman M, Bolam KA, et al. 2018; Highly favorable physiological responses to concurrent resistance and high- intensity interval training during chemotherapy: the OptiTrain breast cancer trial. Breast Cancer Res Treat. 169:93–103. DOI:
10.1007/s10549-018-4663-8. PMID:
29349712. PMCID:
PMC5882634.
38. Schulz SV, Laszlo R, Otto S, et al. 2018; Feasibility and effects of a combined adjuvant high-intensity interval/strength training in breast cancer patients: a single-center pilot study. Disabil Rehabil. 40:1501–8. DOI:
10.1080/09638288.2017.1300688. PMID:
28325109.
39. Schneider CM, Hsieh CC, Sprod LK, Carter SD, Hayward R. 2007; Effects of supervised exercise training on cardiopulmonary function and fatigue in breast cancer survivors during and after treatment. Cancer. 110:918–25. DOI:
10.1002/cncr.22862. PMID:
17582616.
40. Knobf MT, Fennie K, Avila D, et al. 2006; The effect of an exercise intervention on QOL and symptoms in breast cancer survivors. Oncol Nurs Forum. 33:463.
41. Wagoner CW, Lee JT, Sullivan SA, et al. 2019; Community-based exercise improves cancer-related fatigue and physical fitness in breast cancer survivors: a preliminary analysis. Med Sci Sports Exerc. 51:880. DOI:
10.1249/01.mss.0000563128.92549.d6.
42. Milne HM, Wallman KE, Gordon S, Courneya KS. 2008; Effects of a combined aerobic and resistance exercise program in breast cancer survivors: a randomized controlled trial. Breast Cancer Res Treat. 108:279–88. DOI:
10.1007/s10549-007-9602-z. PMID:
17530428.
43. Kemble K, Burnham TR. 2006; Aerobic exercise decreases depression and anxiety in breast cancer survivors. Med Sci Sports Exerc. 38:S422. DOI:
10.1249/00005768-200605001-02650.
44. Zvinovski F, Stephens JA, Ramaswamy B, et al. 2021; A cardiac rehabilitation program for breast cancer survivors: a feasibility study. J Oncol. 2021:9965583. DOI:
10.1155/2021/9965583. PMID:
34135964. PMCID:
PMC8178006.
45. Toohey K, Pumpa K, McKune A, et al. 2020; The impact of high-intensity interval training exercise on breast cancer survivors: a pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC Cancer. 20:787. DOI:
10.1186/s12885-020-07295-1. PMID:
32819304. PMCID:
PMC7441660.
47. Brawner CA, Shafiq A, Aldred HA, et al. 2015; Comprehensive analysis of cardiopulmonary exercise testing and mortality in patients with systolic heart failure: the Henry Ford Hospital cardiopulmonary exercise testing (FIT-CPX) project. J Card Fail. 21:710–8. DOI:
10.1016/j.cardfail.2015.06.001. PMID:
26067685.
48. Inuzuka R, Diller GP, Borgia F, et al. 2012; Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 125:250–9. DOI:
10.1161/CIRCULATIONAHA.111.058719. PMID:
22147905.
49. Jones LW, Courneya KS, Mackey JR, et al. 2012; Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol. 30:2530–7. DOI:
10.1200/JCO.2011.39.9014. PMID:
22614980. PMCID:
PMC3397786.
50. deJong A. 2011; Cardiopulmonary exercise testing current applications and future clinical potential. ACSMs Health Fit J. 15(2):43–45. DOI:
10.1249/FIT.0b013e31820b7470.
52. Schneider J, Schluter K, Wiskemann J, Rosenberger F. 2020; Do we underestimate maximal oxygen uptake in cancer survivors?: findings from a supramaximal verification test. Appl Physiol Nutr Metab. 45:486–92. DOI:
10.1139/apnm-2019-0560. PMID:
31604021.
53. Keteyian SJ, Patel M, Kraus WE, et al. 2016; Variables measured during cardiopulmonary exercise testing as predictors of mortality in chronic systolic heart failure. J Am Coll Cardiol. 67:780–9. DOI:
10.1016/j.jacc.2015.11.050. PMID:
26892413. PMCID:
PMC4761107.
54. Balady GJ, Arena R, Sietsema K, et al. 2010; Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 122:191–225. DOI:
10.1161/CIR.0b013e3181e52e69. PMID:
20585013.
55. Reed JL, Cotie LM, Cole CA, et al. 2020; Submaximal exercise testing in cardiovascular rehabilitation settings (BEST Study). Front Physiol. 10:1517. DOI:
10.3389/fphys.2019.01517. PMID:
31969825. PMCID:
PMC6960105.
56. Tan TC, Scherrer-Crosbie M. 2012; Assessing the cardiac toxicity of chemotherapeutic agents: role of echocardiography. Curr Cardiovasc Imaging Rep. 5:403–9. DOI:
10.1007/s12410-012-9163-3. PMID:
23227272. PMCID:
PMC3513935.
57. Ganame J, Claus P, Uyttebroeck A, et al. 2007; Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr. 20:1351–8. DOI:
10.1016/j.echo.2007.04.007. PMID:
17604960.
58. Jurcut R, Wildiers H, Ganame J, D'hooge J, Paridaens R, Voigt JU. 2008; Detection and monitoring of cardiotoxicity: what does modern cardiology offer? Support Care Cancer. 16:437–45. DOI:
10.1007/s00520-007-0397-6. PMID:
18197426.
59. Lipshultz SE, Lipsitz SR, Sallan SE, et al. 2005; Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 23:2629–36. DOI:
10.1200/JCO.2005.12.121. PMID:
15837978.
60. Arciniegas Calle MC, Sandhu NP, Xia H, et al. 2018; Two- dimensional speckle tracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline- trastuzumab chemotherapy in patients with breast cancer. BMC Cancer. 18:1037. DOI:
10.1186/s12885-018-4935-z. PMID:
30359235. PMCID:
PMC6203211.
61. Harrington JK, Richmond ME, Fein AW, Kobsa S, Satwani P, Shah A. 2018; Two-dimensional speckle tracking echocardiography- derived strain measurements in survivors of childhood cancer on angiotensin converting enzyme inhibition or receptor blockade. Pediatr Cardiol. 39:1404–12. DOI:
10.1007/s00246-018-1910-z. PMID:
29789916.
62. Geyer H, Caracciolo G, Abe H, et al. 2010; Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 23:351–69. DOI:
10.1016/j.echo.2010.02.015. PMID:
20362924.
63. Sawaya H, Sebag IA, Plana JC, et al. 2012; Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 5:596–603. DOI:
10.1161/CIRCIMAGING.112.973321. PMID:
22744937. PMCID:
PMC3703313.
65. Fallah-Rad N, Walker JR, Wassef A, et al. 2011; The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 57:2263–70. DOI:
10.1016/j.jacc.2010.11.063. PMID:
21616287.
66. Armstrong GT, Plana JC, Zhang N, et al. 2012; Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol. 30:2876–84. DOI:
10.1200/JCO.2011.40.3584. PMID:
22802310. PMCID:
PMC3671529.
67. Donekal S, Ambale-Venkatesh B, Berkowitz S, et al. 2013; Inter- study reproducibility of cardiovascular magnetic resonance tagging. J Cardiovasc Magn Reson. 15:37. DOI:
10.1186/1532-429X-15-37. PMID:
23663535. PMCID:
PMC3667053.
68. Tumkosit M, Detphirattanamongkhol J, Kuadwongsa A, Srimahachota S, Kitsukjit W, Wangsuphachart S. 2011; Left ventricular ejection fraction measurement using cardiovascular magnetic resonance imaging in patients with post-myocardial infarction: assessment of reproducibility by a cardiovascular radiologist and a trained technologist. Asian Biomed. 5:543–8. DOI:
10.5372/1905-7415.0504.072.
69. Neilan TG, Coelho-Filho OR, Shah RV, et al. 2013; Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol. 111:717–22. DOI:
10.1016/j.amjcard.2012.11.022. PMID:
23228924. PMCID:
PMC3578020.
70. Barthur A, Brezden-Masley C, Connelly KA, et al. 2017; Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. J Cardiovasc Magn Reson. 19:44. DOI:
10.1186/s12968-017-0356-4. PMID:
28395671. PMCID:
PMC5387372.
71. Lunning MA, Kutty S, Rome ET, et al. 2015; Cardiac magnetic resonance imaging for the assessment of the myocardium after doxorubicin-based chemotherapy. Am J Clin Oncol. 38:377–81. DOI:
10.1097/COC.0b013e31829e19be. PMID:
24192805.
72. Plana JC, Galderisi M, Barac A, et al. 2014; Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 15:1063–93. DOI:
10.1093/ehjci/jeu192. PMID:
25239940. PMCID:
PMC4402366.
75. Sala V, Della Sala A, Hirsch E, Ghigo A. 2020; Signaling pathways underlying anthracycline cardiotoxicity. Antioxid Redox Signal. 32:1098–114. DOI:
10.1089/ars.2020.8019. PMID:
31989842.
76. Chaosuwannakit N, D'Agostino R Jr, Hamilton CA, et al. 2010; Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol. 28:166–72. DOI:
10.1200/JCO.2009.23.8527. PMID:
19901105. PMCID:
PMC2799231.
77. Yersal O, Eryilmaz U, Akdam H, Meydan N, Barutca S. 2018; Arterial stiffness in breast cancer patients treated with anthracycline and trastuzumab-based regimens. Cardiol Res Pract. 2018:5352914. DOI:
10.1155/2018/5352914. PMID:
29854434. PMCID:
PMC5954934.
78. Souza CA, Simoes R, Borges KB, et al. 2018; Arterial stiffness use for early monitoring of cardiovascular adverse events due to anthracycline chemotherapy in breast cancer patients: a pilot study. Arq Bras Cardiol. 111:721–8. DOI:
10.5935/abc.20180168. PMID:
30281690. PMCID:
PMC6248238.
79. Chung GE, Park HE, Lee H, Choi SY. 2021; Clinical significance of increased arterial stiffness associated with atrial fibrillation, according to Framingham risk score. Sci Rep. 11:4955. DOI:
10.1038/s41598-021-84311-9. PMID:
33654162. PMCID:
PMC7925576.
80. Chen Y, Shen F, Liu J, Yang GY. 2017; Arterial stiffness and stroke: de-stiffening strategy, a therapeutic target for stroke. Stroke Vasc Neurol. 2:65–72. DOI:
10.1136/svn-2016-000045. PMID:
28959494. PMCID:
PMC5600012.
81. Van Bortel LM, De Backer T, Segers P. 2016; Standardization of arterial stiffness measurements make them ready for use in clinical practice. Am J Hypertens. 29:1234–6. DOI:
10.1093/ajh/hpw084. PMID:
27496167.
82. Flore R, Ponziani FR, Tinelli G, et al. 2015; New modalities of ultrasound-based intima-media thickness, arterial stiffness and non-coronary vascular calcifications detection to assess cardiovascular risk. Eur Rev Med Pharmacol Sci. 19:1430–41. PMID:
25967718.
83. Swisher AK, Abraham J, Bonner D, et al. 2015; Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile. Support Care Cancer. 23:2995–3003. DOI:
10.1007/s00520-015-2667-z. PMID:
25724409. PMCID:
PMC4624214.
84. Capozzi LC, Nishimura KC, McNeely ML, Lau H, Culos- Reed SN. 2016; The impact of physical activity on health-related fitness and quality of life for patients with head and neck cancer: a systematic review. Br J Sports Med. 50:325–38. DOI:
10.1136/bjsports-2015-094684. PMID:
25966911.