1. Rawlins ML, Roberts WL. 2004; Performance characteristics of six third-generation assays for thyroid-stimulating hormone. Clin Chem. 50:2338–44. DOI:
10.1373/clinchem.2004.039156. PMID:
15472032.
2. La'ulu SL, Roberts WL. 2007; Performance characteristics of five automated CA 19-9 assays. Am J Clin Pathol. 127:436–40. DOI:
10.1309/H52VET3M6P7GYWG1. PMID:
17276945.
5. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. 1993; Naturally occurring antibodies devoid of light chains. Nature. 363:446–8. DOI:
10.1038/363446a0. PMID:
8502296.
6. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. 1995; A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 374:168–73. DOI:
10.1038/374168a0. PMID:
7877689.
7. Roux KH, Greenberg AS, Greene L, Strelets L, Avila D, McKinney EC, et al. 1998; Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci U S A. 95:11804–9. DOI:
10.1073/pnas.95.20.11804. PMID:
9751746. PMCID:
PMC21721.
8. Nguyen VK, Hamers R, Wyns L, Muyldermans S. 1999; Loss of splice consensus signal is responsible for the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chain antibodies. Mol Immunol. 36:515–24. DOI:
10.1016/S0161-5890(99)00067-X. PMID:
10475606.
9. Woolven BP, Frenken LG, van der Logt P, Nicholls PJ. 1999; The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics. 50:98–101. DOI:
10.1007/s002510050694. PMID:
10541815.
10. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, et al. 2000; Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods. 240:185–95. DOI:
10.1016/S0022-1759(00)00188-5. PMID:
10854612.
11. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. 1997; Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol. 34:1121–31. DOI:
10.1016/S0161-5890(97)00146-6. PMID:
9566760.
12. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B. 2000; Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol. 37:579–90. DOI:
10.1016/S0161-5890(00)00081-X. PMID:
11163394.
13. Decanniere K, Muyldermans S, Wyns L. 2000; Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes? J Mol Biol. 300:83–91. DOI:
10.1006/jmbi.2000.3839. PMID:
10864500.
14. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R. 1994; Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 7:1129–35. DOI:
10.1093/protein/7.9.1129. PMID:
7831284.
16. Verheesen P, Roussis A, de Haard HJ, Groot AJ, Stam JC, den Dunnen JT, et al. 2006; Reliable and controllable antibody fragment selections from Camelid non-immune libraries for target validation. Biochim Biophys Acta. 1764:1307–19. DOI:
10.1016/j.bbapap.2006.05.011. PMID:
16872921.
18. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, et al. 1999; Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim Biophys Acta. 1431:37–46. DOI:
10.1016/S0167-4838(99)00030-8. PMID:
10209277.
19. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S. 1997; Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414:521–6. DOI:
10.1016/S0014-5793(97)01062-4. PMID:
9323027.
20. Abbady AQ, Al-Daoude A, Al-Mariri A, Zarkawi M, Muyldermans S. 2012; Chaperonin GroEL a
Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies. Vet Immunol Immunopathol. 146:254–63. DOI:
10.1016/j.vetimm.2012.01.015. PMID:
22472910.
21. Saerens D, Stijlemans B, Baral TN, Nguyen Thi GT, Wernery U, Magez S, et al. 2008; Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. J Immunol Methods. 329:138–50. DOI:
10.1016/j.jim.2007.10.005. PMID:
17996887.
22. Sockolosky JT, Dougan M, Ingram JR, Ho CC, Kauke MJ, Almo SC, et al. 2016; Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A. 113:E2646–54. DOI:
10.1073/pnas.1604268113. PMID:
27091975. PMCID:
PMC4868409.
23. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, et al. 2002; Single-domain antibody fragments with high conformational stability. Protein Sci. 11:500–15. DOI:
10.1110/ps.34602. PMID:
11847273. PMCID:
PMC2373476.
24. Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Hölzer W, De Genst E, et al. 1998; Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17:3512–20. DOI:
10.1093/emboj/17.13.3512. PMID:
9649422. PMCID:
PMC1170688.
25. Desmyter A, Decanniere K, Muyldermans S, Wyns L. 2001; Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem. 276:26285–90. DOI:
10.1074/jbc.M102107200. PMID:
11342547.
26. Desmyter A, Transue TR, Ghahroudi MA, Thi MH, Poortmans F, Hamers R, et al. 1996; Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol. 3:803–11. DOI:
10.1038/nsb0996-803. PMID:
8784355.
27. Ladenson RC, Crimmins DL, Landt Y, Ladenson JH. 2006; Isolation and characterization of a thermally stable recombinant anti-caffeine heavy-chain antibody fragment. Anal Chem. 78:4501–8. DOI:
10.1021/ac058044j. PMID:
16808459.
28. Spinelli S, Frenken LG, Hermans P, Verrips T, Brown K, Tegoni M, et al. 2000; Camelid heavy-chain variable domains provide efficient combining sites to haptens. Biochemistry. 39:1217–22. DOI:
10.1021/bi991830w. PMID:
10684599.
29. Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM. 2015; Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond). 10:161–74. DOI:
10.2217/nnm.14.178. PMID:
25597775.
30. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. 2009; General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 284:3273–84. DOI:
10.1074/jbc.M806889200. PMID:
19010777.
31. Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hultberg A, de Jonge N, et al. 2015; Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. MAbs. 7:693–706. DOI:
10.1080/19420862.2015.1046648. PMID:
26018625. PMCID:
PMC4622956.
32. Zavrtanik U, Lukan J, Loris R, Lah J, Hadži S. 2018; Structural basis of epitope recognition by heavy-chain camelid antibodies. J Mol Biol. 430:4369–86. DOI:
10.1016/j.jmb.2018.09.002. PMID:
30205092.
34. Fatima A, Wang H, Kang K, Xia L, Wang Y, Ye W, et al. 2014; Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis. PLoS One. 9:e95263. DOI:
10.1371/journal.pone.0095263. PMID:
24751715. PMCID:
PMC3994031.
35. Pinto Torres JE, Goossens J, Ding J, Li Z, Lu S, Vertommen D, et al. 2018; Development of a nanobody-based lateral flow assay to detect active
Trypanosoma congolense infections. Sci Rep. 8:9019. DOI:
10.1038/s41598-018-26732-7. PMID:
29899344. PMCID:
PMC5998082.
36. Fraile S, Jiménez JI, Gutiérrez C, de Lorenzo V. 2013; NanoPad: an integrated platform for bacterial production of camel nanobodies aimed at detecting environmental biomarkers. Proteomics. 13:2766–75. DOI:
10.1002/pmic.201300009. PMID:
23661305.
37. Zhang YQ, Xu ZL, Wang F, Cai J, Dong JX, Zhang JR, et al. 2018; Isolation of Bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein. Anal Chem. 90:12886–92. DOI:
10.1021/acs.analchem.8b03509. PMID:
30256086.
38. Huo J, Li Z, Wan D, Li D, Qi M, Barnych B, et al. 2018; Development of a highly sensitive direct competitive fluorescence enzyme immunoassay based on a nanobody-alkaline phosphatase fusion protein for detection of 3-phenoxybenzoic acid in urine. J Agric Food Chem. 66:11284–90. DOI:
10.1021/acs.jafc.8b04521. PMID:
30293433. PMCID:
PMC6442738.
39. Huo J, Barnych B, Li Z, Wan D, Li D, Vasylieva N, et al. 2019; Hapten synthesis, antibody development, and a highly sensitive indirect competitive chemiluminescent enzyme immunoassay for detection of dicamba. J Agric Food Chem. 67:5711–9. DOI:
10.1021/acs.jafc.8b07134. PMID:
31042038. PMCID:
PMC6873229.
40. Kim HJ, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-da Rosa S, et al. 2012; Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem. 84:1165–71. DOI:
10.1021/ac2030255. PMID:
22148739. PMCID:
PMC3264785.
41. Wang J, Bever CR, Majkova Z, Dechant JE, Yang J, Gee SJ, et al. 2014; Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Anal Chem. 86:8296–302. DOI:
10.1021/ac5017437. PMID:
25068372. PMCID:
PMC4139172.
42. Zhang JR, Wang Y, Dong JX, Yang JY, Zhang YQ, Wang F, et al. 2019; Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples. Biomolecules. 9:576. DOI:
10.3390/biom9100576. PMID:
31591300. PMCID:
PMC6843801.
43. Li H, Sun Y, Elseviers J, Muyldermans S, Liu S, Wan Y. 2014; A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst. 139:3718–21. DOI:
10.1039/c4an00626g. PMID:
24931592.
44. Liu JL, Raghu D, Anderson GP, Goldman ER, Christodoulides JA, Raphael MP. 2017; Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies. Heliyon. 3:e00478. DOI:
10.1016/j.heliyon.2017.e00478. PMID:
29423452. PMCID:
PMC5772350.
45. Saerens D, Frederix F, Reekmans G, Conrath K, Jans K, Brys L, et al. 2005; Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal Chem. 77:7547–55. DOI:
10.1021/ac051092j. PMID:
16316161.
46. Liu X, Wang D, Chu J, Xu Y, Wang W. 2018; Sandwich pair nanobodies, a potential tool for electrochemical immunosensing serum prostate-specific antigen with preferable specificity. J Pharm Biomed Anal. 158:361–9. DOI:
10.1016/j.jpba.2018.06.021. PMID:
29935325.
47. Bock JL, Klee GG. 2004; How sensitive is a prostate-specific antigen measurement? How sensitive does it need to be? Arch Pathol Lab Med. 128:341–3. DOI:
10.5858/2004-128-341-HSIAPA. PMID:
14987148.
48. Murad H, Assaad JM, Al-Shemali R, Abbady AQ. 2017; Exploiting nanobodies in the detection and quantification of human growth hormone via phage-sandwich enzyme-linked immunosorbent assay. Front Endocrinol (Lausanne). 8:115. DOI:
10.3389/fendo.2017.00115. PMID:
28611730. PMCID:
PMC5447680.
49. Morales-Yánez F, Trashin S, Hermy M, Sariego I, Polman K, Muyldermans S, et al. 2019; Fast one-step ultrasensitive detection of Toxocara canis antigens by a nanobody-based electrochemical magnetosensor. Anal Chem. 91:11582–8. DOI:
10.1021/acs.analchem.9b01687. PMID:
31429269.
50. Morales-Yánez F, Trashin S, Sariego I, Roucher C, Paredis L, Chico M, et al. 2020; Electrochemical detection of
Toxocara canis excretory-secretory antigens in children from rural communities in Esmeraldas Province, Ecuador: association between active infection and high eosinophilia. Parasit Vectors. 13:245. DOI:
10.1186/s13071-020-04113-2. PMID:
32398157. PMCID:
PMC7216625.
51. Vaneycken I, D'Huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, et al. 2011; Immuno-imaging using nanobodies. Curr Opin Biotechnol. 22:877–81. DOI:
10.1016/j.copbio.2011.06.009. PMID:
21726996.
52. Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann RE. 2012; Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem. 287:4462–9. DOI:
10.1074/jbc.M111.311522. PMID:
22147690. PMCID:
PMC3281650.
53. Unverdorben F, Färber-Schwarz A, Richter F, Hutt M, Kontermann RE. 2012; Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng Des Sel. 25:81–8. DOI:
10.1093/protein/gzr061. PMID:
22238430.
54. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. 2016; Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 57:27–33. DOI:
10.2967/jnumed.115.162024. PMID:
26449837.
55. Nuttall SD, Humberstone KS, Krishnan UV, Carmichael JA, Doughty L, Hattarki M, et al. 2004; Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMA1. Proteins. 55:187–97. DOI:
10.1002/prot.20005. PMID:
14997552.
56. Obishakin E, Stijlemans B, Santi-Rocca J, Vandenberghe I, Devreese B, Muldermans S, et al. 2014; Generation of a nanobody targeting the paraflagellar rod protein of trypanosomes. PLoS One. 9:e115893. DOI:
10.1371/journal.pone.0115893. PMID:
25551637. PMCID:
PMC4281110.
57. Odongo S, Sterckx YG, Stijlemans B, Pillay D, Baltz T, Muyldermans S, et al. 2016; An anti-proteome nanobody library approach yields a specific immunoassay for
Trypanosoma congolense diagnosis targeting glycosomal aldolase. PLoS Negl Trop Dis. 10:e0004420. DOI:
10.1371/journal.pntd.0004420. PMID:
26835967. PMCID:
PMC4737498.
58. Pinto J, Odongo S, Lee F, Gaspariunaite V, Muyldermans S, Magez S, et al. 2017; Structural basis for the high specificity of a
Trypanosoma congolense immunoassay targeting glycosomal aldolase. PLoS Negl Trop Dis. 11:e0005932. DOI:
10.1371/journal.pntd.0005932. PMID:
28915239. PMCID:
PMC5617235.
59. Abeijon C, Dilo J, Tremblay JM, Viana AG, Bueno LL, Carvalho SFG, et al. 2018; Use of VHH antibodies for the development of antigen detection test for visceral leishmaniasis. Parasite Immunol. 40:e12584. DOI:
10.1111/pim.12584. PMID:
30120856. PMCID:
PMC6220836.
60. Barreto T, Alfonso Y, Lafaye P, García Lazaro MDP, Agueda Perez L, Herrera-Velit P, et al. 2018; Single-chain antibodies from alpaca for the detection of Fasciola hepatica antigens. Rev Peru Med Exp Salud Publica. 35:573–80. DOI:
10.17843/rpmesp.2018.354.3101. PMID:
30726427.
61. Deckers N, Saerens D, Kanobana K, Conrath K, Victor B, Wernery U, et al. 2009; Nanobodies, a promising tool for species-specific diagnosis of
Taenia solium cysticercosis. Int J Parasitol. 39:625–33. DOI:
10.1016/j.ijpara.2008.10.012. PMID:
19041315.
62. Morales-Yanez FJ, Sariego I, Vincke C, Hassanzadeh-Ghassabeh G, Polman K, Muyldermans S. 2019; An innovative approach in the detection of
Toxocara canis excretory/secretory antigens using specific nanobodies. Int J Parasitol. 49:635–45. DOI:
10.1016/j.ijpara.2019.03.004. PMID:
31150611.
63. Wang F, Li ZF, Yang YY, Wan DB, Vasylieva N, Zhang YQ, et al. 2020; Chemiluminescent enzyme immunoassay and bioluminescent enzyme immunoassay for tenuazonic acid mycotoxin by exploitation of nanobody and nanobody-nanoluciferase fusion. Anal Chem. 92:11935–42. DOI:
10.1021/acs.analchem.0c02338. PMID:
32702970. PMCID:
PMC7743996.
64. Riazi A, Strong PC, Coleman R, Chen W, Hirama T, van Faassen H, et al. 2013; Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens. PLoS One. 8:e83928. DOI:
10.1371/journal.pone.0083928. PMID:
24391847. PMCID:
PMC3877120.
65. Hussack G, Riazi A, Ryan S, van Faassen H, MacKenzie R, Tanha J, et al. 2014; Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility. Protein Eng Des Sel. 27:191–8. DOI:
10.1093/protein/gzu011. PMID:
24742504.
66. Tu Z, Chen Q, Li Y, Xiong Y, Xu Y, Hu N, et al. 2016; Identification and characterization of species-specific nanobodies for the detection of
Listeria monocytogenes in milk. Anal Biochem. 493:1–7. DOI:
10.1016/j.ab.2015.09.023. PMID:
26456330.
67. Melli LJ, Zylberman V, Hiriart Y, Lauche CE, Baschkier A, Pardo R, et al. 2020; Development and evaluation of a novel VHH-based immunocapture assay for high-sensitivity detection of
Shiga toxin Type 2 (Stx2) in stool samples. J Clin Microbiol. 58:e01566–19. DOI:
10.1128/JCM.01566-19. PMID:
31826960. PMCID:
PMC7041585.
68. Liu JL, Anderson GP, Delehanty JB, Baumann R, Hayhurst A, Goldman ER. 2007; Selection of cholera toxin specific IgNAR single-domain antibodies from a naïve shark library. Mol Immunol. 44:1775–83. DOI:
10.1016/j.molimm.2006.07.299. PMID:
17007931.
69. Zhu M, Gong X, Hu Y, Ou W, Wan Y. 2014; Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1. J Transl Med. 12:352. DOI:
10.1186/s12967-014-0352-5. PMID:
25526777. PMCID:
PMC4274719.
70. Liu JL, Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. 2018; Selection of single-domain antibodies towards western equine encephalitis virus. Antibodies (Basel). 7:44. DOI:
10.3390/antib7040044. PMID:
31544894. PMCID:
PMC6698954.
71. Gelkop S, Sobarzo A, Brangel P, Vincke C, Romão E, Fedida-Metula S, et al. 2018; The development and validation of a novel nanobody-based competitive ELISA for the detection of foot and mouth disease 3ABC antibodies in cattle. Front Vet Sci. 5:250. DOI:
10.3389/fvets.2018.00250. PMID:
30370272. PMCID:
PMC6194346.
72. Ma Z, Wang T, Li Z, Guo X, Tian Y, Li Y, et al. 2019; A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. J Nanobiotechnology. 17:96. DOI:
10.1186/s12951-019-0531-x. PMID:
31526383. PMCID:
PMC6745792.
73. Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. 2011; Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol. 48:2027–37. DOI:
10.1016/j.molimm.2011.06.437. PMID:
21752470.
74. Habib I, Smolarek D, Hattab C, Grodecka M, Hassanzadeh-Ghassabeh G, Muyldermans S, et al. 2013; V(H)H (nanobody) directed against human glycophorin A: a tool for autologous red cell agglutination assays. Anal Biochem. 438:82–9. DOI:
10.1016/j.ab.2013.03.020. PMID:
23541519.
75. Chen J, He QH, Xu Y, Fu JH, Li YP, Tu Z, et al. 2016; Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta. 147:523–30. DOI:
10.1016/j.talanta.2015.10.027. PMID:
26592642.
76. Schlör A, Holzlöhner P, Listek M, Griess C, Butze M, Micheel B, et al. 2018; Generation and validation of murine monoclonal and camelid recombinant single domain antibodies specific for human pancreatic glycoprotein 2. N Biotechnol. 45:60–8. DOI:
10.1016/j.nbt.2018.03.006. PMID:
29635104.
77. Faraji F, Tajik N, Behdani M, Shokrgozar MA, Zarnani AH, Shahhosseini F, et al. 2018; Development and characterization of a camelid single-domain antibody directed to human CD22 biomarker. Biotechnol Appl Biochem. 65:718–25. DOI:
10.1002/bab.1654. PMID:
29543347.
78. Li T, Li SL, Fang C, Hou YN, Zhang Q, Du X, et al. 2018; Nanobody-based dual epitopes protein identification (DepID) assay for measuring soluble CD38 in plasma of multiple myeloma patients. Anal Chim Acta. 1029:65–71. DOI:
10.1016/j.aca.2018.04.061. PMID:
29907292.
79. Huang C, Li D, Ren J, Ji F, Jia L. 2019; Generation and application of fluorescent anti-human beta2-microglobulin VHH's via amino modification. Molecules. 24:2600. DOI:
10.3390/molecules24142600. PMID:
31319525. PMCID:
PMC6680903.
80. Gainkam LO, Keyaerts M, Caveliers V, Devoogdt N, Vanhove C, Van Grunsven L, et al. 2011; Correlation between epidermal growth factor receptor-specific nanobody uptake and tumor burden: a tool for noninvasive monitoring of tumor response to therapy. Mol Imaging Biol. 13:940–8. DOI:
10.1007/s11307-010-0428-4. PMID:
20865332.
81. Romão E, Krasniqi A, Maes L, Vandenbrande C, Sterckx YG, Stijlemans B, et al. 2020; Identification of nanobodies against the acute myeloid leukemia marker CD33. Int J Mol Sci. 21:310. DOI:
10.3390/ijms21010310. PMID:
31906437. PMCID:
PMC6981622.
82. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. 2012; Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 72:4165–77. DOI:
10.1158/0008-5472.CAN-11-2994. PMID:
22719068.
83. Blykers A, Schoonooghe S, Xavier C, D'Hoe K, Laoui D, D'Huyvetter M, et al. 2015; PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-Radiolabeled camelid single-domain antibody fragments. J Nucl Med. 56:1265–71. DOI:
10.2967/jnumed.115.156828. PMID:
26069306.
84. Evazalipour M, D'Huyvetter M, Tehrani BS, Abolhassani M, Omidfar K, Abdoli S, et al. 2014; Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media Mol Imaging. 9:211–20. DOI:
10.1002/cmmi.1558. PMID:
24700748.
85. Krasniqi A, D'Huyvetter M, Xavier C, Van der Jeught K, Muyldermans S, Van Der Heyden J, et al. 2017; Theranostic radiolabeled anti-CD20 sdAb for targeted radionuclide therapy of non-Hodgkin lymphoma. Mol Cancer Ther. 16:2828–39. DOI:
10.1158/1535-7163.MCT-17-0554. PMID:
29054987.
86. Krasniqi A, Bialkowska M, Xavier C, Van der Jeught K, Muyldermans S, Devoogdt N, et al. 2018; Pharmacokinetics of radiolabeled dimeric sdAbs constructs targeting human CD20. N Biotechnol. 45:69–79. DOI:
10.1016/j.nbt.2018.03.004. PMID:
29574274.
87. Balhuizen A, Massa S, Mathijs I, Turatsinze JV, De Vos J, Demine S, et al. 2017; A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Sci Rep. 7:15130. DOI:
10.1038/s41598-017-15417-2. PMID:
29123178. PMCID:
PMC5680294.
88. van Brussel AS, Adams A, Vermeulen JF, Oliveira S, van der Wall E, Mali WP, et al. 2013; Molecular imaging with a fluorescent antibody targeting carbonic anhydrase IX can successfully detect hypoxic ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 140:263–72. DOI:
10.1007/s10549-013-2635-6. PMID:
23860929.
89. Zheng F, Sparkes A, De Baetselier P, Schoonooghe S, Stijlemans B, Muyldermans S, et al. 2017; Molecular imaging with Kupffer cell-targeting nanobodies for diagnosis and prognosis in mouse models of liver pathogenesis. Mol Imaging Biol. 19:49–58. DOI:
10.1007/s11307-016-0976-3. PMID:
27339464.
90. Zheng F, Perlman H, Matthys P, Wen Y, Lahoutte T, Muyldermans S, et al. 2016; Specificity evaluation and disease monitoring in arthritis imaging with complement receptor of the Ig superfamily targeting Nanobodies. Sci Rep. 6:35966. DOI:
10.1038/srep35966. PMID:
27779240. PMCID:
PMC5078791.
91. Zheng F, Put S, Bouwens L, Lahoutte T, Matthys P, Muyldermans S, et al. 2014; Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med. 55:824–9. DOI:
10.2967/jnumed.113.130617. PMID:
24686780.
92. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. 2012; Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 110:927–37. DOI:
10.1161/CIRCRESAHA.112.265140. PMID:
22461363. PMCID:
PMC3918224.
93. Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, et al. 2019; Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci U S A. 116:14181–90. DOI:
10.1073/pnas.1817442116. PMID:
31068469. PMCID:
PMC6628802.