2. de Visser KE, Eichten A, Coussens LM. 2006; Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 6:24–37. DOI:
10.1038/nrc1782. PMID:
16397525.
4. Herrera AF, Moskowitz AJ, Bartlett NL, et al. 2018; Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 131:1183–94. DOI:
10.1182/blood-2017-10-811224. PMID:
29229594. PMCID:
PMC5855021.
5. Armand P, Engert A, Younes A, et al. 2018; Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol. 36:1428–39. DOI:
10.1200/JCO.2017.76.0793. PMID:
29584546. PMCID:
PMC6075855.
6. Chen R, Zinzani PL, Lee HJ, et al. 2019; Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood. 134:1144–53. DOI:
10.1182/blood.2019000324. PMID:
31409671. PMCID:
PMC6776792.
7. Ramchandren R, Domingo-Domènech E, Rueda A, et al. 2019; Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the phase II CheckMate 205 study. J Clin Oncol. 37:1997–2007. DOI:
10.1200/JCO.19.00315. PMID:
31112476. PMCID:
PMC6688776.
9. Zinzani PL, Ribrag V, Moskowitz CH, et al. 2017; Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 130:267–70. DOI:
10.1182/blood-2016-12-758383. PMID:
28490569. PMCID:
PMC5766837.
10. Georgiou K, Chen L, Berglund M, et al. 2016; Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood. 127:3026–34. DOI:
10.1182/blood-2015-12-686550. PMID:
27030389.
11. de Charette M, Houot R. 2018; Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immuno-therapy. Haematologica. 103:1256–68. DOI:
10.3324/haematol.2017.184192. PMID:
30006449. PMCID:
PMC6068015.
12. Voorzanger N, Touitou R, Garcia E, et al. 1996; Interleukin (IL)-10 and IL-6 are produced in vivo by non-Hodgkin's lymphoma cells and act as cooperative growth factors. Cancer Res. 56:5499–505. PMID:
8968107.
13. Malaponte G, Hafsi S, Polesel J, et al. 2016; Tumor microenvironment in diffuse large B-cell lymphoma: matrixmetalloproteinases activation is mediated by osteopontin overexpression. Biochim Biophys Acta. 1863:483–9. DOI:
10.1016/j.bbamcr.2015.09.018. PMID:
26381542.
14. Muppidi JR, Schmitz R, Green JA, et al. 2014; Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature. 516:254–8. DOI:
10.1038/nature13765. PMID:
25274307. PMCID:
PMC4267955.
16. Ma CS, Deenick EK, Batten M, Tangye SG. 2012; The origins, function, and regulation of T follicular helper cells. J Exp Med. 209:1241–53. DOI:
10.1084/jem.20120994. PMID:
22753927. PMCID:
PMC3405510.
17. Gu-Trantien C, Loi S, Garaud S, et al. 2013; CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 123:2873–92. DOI:
10.1172/JCI67428. PMID:
23778140. PMCID:
PMC3696556.
18. Amé-Thomas P, Le Priol J, Yssel H, et al. 2012; Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia. 26:1053–63. DOI:
10.1038/leu.2011.301. PMID:
22015774. PMCID:
PMC3428269.
19. Pandey S, Mourcin F, Marchand T, et al. 2017; IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood. 129:2507–18. DOI:
10.1182/blood-2016-08-737239. PMID:
28202459.
20. Mourcin F, Pangault C, Amin-Ali R, Amé-Thomas P, Tarte K. 2012; Stromal cell contribution to human follicular lymphoma pathogenesis. Front Immunol. 3:280. DOI:
10.3389/fimmu.2012.00280. PMID:
22973275. PMCID:
PMC3433684.
21. Epron G, Ame-Thomas P, Le Priol J, et al. 2012; Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia. 26:139–48. DOI:
10.1038/leu.2011.179. PMID:
21788945.
22. Coelho V, Krysov S, Ghaemmaghami AM, et al. 2010; Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 107:18587–92. DOI:
10.1073/pnas.1009388107. PMID:
20937880. PMCID:
PMC2972945.
23. Meirav K, Ginette S, Tamar T, Iris B, Arnon N, Abraham A. 2017; Extrafollicular PD1 and intrafollicular CD3 expression are associated with survival in follicular lymphoma. Clin Lymphoma Myeloma Leuk. 17:645–9. DOI:
10.1016/j.clml.2017.06.026. PMID:
28733197.
24. Rawal S, Chu F, Zhang M, et al. 2013; Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol. 190:6681–93. DOI:
10.4049/jimmunol.1201363. PMID:
23686488. PMCID:
PMC3680117.
25. Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. 2010; The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood. 115:289–95. DOI:
10.1182/blood-2009-07-235598. PMID:
19901260.
26. Canioni D, Salles G, Mounier N, et al. 2008; High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J Clin Oncol. 26:440–6. DOI:
10.1200/JCO.2007.12.8298. PMID:
18086798.
27. Dubois S, Viailly PJ, Mareschal S, et al. 2016; Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: a LYSA Study. Clin Cancer Res. 22:2919–28. DOI:
10.1158/1078-0432.CCR-15-2305. PMID:
26819451.
28. Schmitz R, Wright GW, Huang DW, et al. 2018; Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 378:1396–407. DOI:
10.1056/NEJMoa1801445. PMID:
29641966. PMCID:
PMC6010183.
29. Chapuy B, Stewart C, Dunford AJ, et al. 2018; Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 24:679–90. DOI:
10.1038/s41591-018-0016-8. PMID:
29713087. PMCID:
PMC6613387.
30. Cha Z, Qian G, Zang Y, et al. 2017; Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res. 350:154–60. DOI:
10.1016/j.yexcr.2016.11.017. PMID:
27888017.
31. Béguelin W, Sawh S, Chambwe N, et al. 2015; IL10 receptor is a novel therapeutic target in DLBCLs. Leukemia. 29:1684–94. DOI:
10.1038/leu.2015.57. PMID:
25733167.
33. Ruan J, Hyjek E, Kermani P, et al. 2006; Magnitude of stromal hemangiogenesis correlates with histologic subtype of non-Hodgkin's lymphoma. Clin Cancer Res. 12:5622–31. DOI:
10.1158/1078-0432.CCR-06-1204. PMID:
17020964.

34. Manfroi B, McKee T, Mayol JF, et al. 2017; CXCL-8/IL8 produced by diffuse large B-cell lymphomas recruits neutrophils expressing a proliferation-inducing ligand APRIL. Cancer Res. 77:1097–107. DOI:
10.1158/0008-5472.CAN-16-0786. PMID:
27923834.
35. Schwaller J, Schneider P, Mhawech-Fauceglia P, et al. 2007; Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood. 109:331–8. DOI:
10.1182/blood-2006-02-001800. PMID:
17190854.
36. Nie M, Yang L, Bi X, et al. 2019; Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling. Clin Cancer Res. 25:1867–79. DOI:
10.1158/1078-0432.CCR-18-1226. PMID:
30446590.
37. Chapuy B, Roemer MG, Stewart C, et al. 2016; Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 127:869–81. DOI:
10.1182/blood-2015-10-673236. PMID:
26702065. PMCID:
PMC4760091.
38. Xue T, Wang WG, Zhou XY, Li XQ. 2018; EBV-positive diffuse large B-cell lymphoma features PD-L1 protein but not mRNA overexpression. Pathology. 50:725–9. DOI:
10.1016/j.pathol.2018.08.011. PMID:
30389217.
39. Wei Y, Zhao Q, Gao Z, et al. 2019; The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J Clin Invest. 129:3347–60. DOI:
10.1172/JCI127726. PMID:
31112529. PMCID:
PMC6668685.
40. Goodman A, Patel SP, Kurzrock R. 2017; PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol. 14:203–20. DOI:
10.1038/nrclinonc.2016.168. PMID:
27805626.
41. Wherry EJ, Kurachi M. 2015; Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–99. DOI:
10.1038/nri3862. PMID:
26205583. PMCID:
PMC4889009.

42. Chen Z, Ji Z, Ngiow SF, et al. 2019; TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 51:840–55. e5. DOI:
10.1016/j.immuni.2019.09.013. PMID:
31606264. PMCID:
PMC6943829.
43. Kwon M, Kim CG, Lee H, et al. 2020; PD-1 blockade reinvigorates bone marrow CD8
+ T cells from patients with multiple myeloma in the presence of TGFβ inhibitors. Clin Cancer Res. 26:1644–55. DOI:
10.1158/1078-0432.CCR-19-0267. PMID:
31941832.
44. Glas AM, Knoops L, Delahaye L, et al. 2007; Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol. 25:390–8. DOI:
10.1200/JCO.2006.06.1648. PMID:
17200149.

45. Lenz G, Wright G, Dave SS, et al. 2008; Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 359:2313–23. DOI:
10.1056/NEJMoa0802885. PMID:
19038878.
46. Sugiyama D, Nishikawa H, Maeda Y, et al. 2013; Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A. 110:17945–50. DOI:
10.1073/pnas.1316796110. PMID:
24127572. PMCID:
PMC3816454.
47. Kim YH, Bagot M, Pinter-Brown L, et al. 2018; Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 19:1192–204. DOI:
10.1016/S1470-2045(18)30379-6. PMID:
30100375.
48. Houot R, Levy R. 2009; T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood. 113:3546–52. DOI:
10.1182/blood-2008-07-170274. PMID:
18941113. PMCID:
PMC2668854.
50. Lin W, Voskens CJ, Zhang X, et al. 2008; Fc-dependent expression of CD137 on human NK cells: insights into ''agonistic'' effects of anti-CD137 monoclonal antibodies. Blood. 112:699–707. DOI:
10.1182/blood-2007-11-122465. PMID:
18519814. PMCID:
PMC2481534.
51. Gopal AK, Levy R, Houot R, et al. 2020; First-in-human study of utomilumab, a 4-1BB/CD137 agonist, in combination with rituximab in patients with follicular and other CD20
+ non-Hodgkin lymphomas. Clin Cancer Res. 26:2524–34. DOI:
10.1158/1078-0432.CCR-19-2973. PMID:
32144134.
52. Wiernik PH, Lossos IS, Tuscano JM, et al. 2008; Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma. J Clin Oncol. 26:4952–7. DOI:
10.1200/JCO.2007.15.3429. PMID:
18606983.
53. Habermann TM, Lossos IS, Justice G, et al. 2009; Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. Br J Haematol. 145:344–9. DOI:
10.1111/j.1365-2141.2009.07626.x. PMID:
19245430.
54. Witzig TE, Vose JM, Zinzani PL, et al. 2011; An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. Ann Oncol. 22:1622–7. DOI:
10.1093/annonc/mdq626. PMID:
21228334.
55. Vitolo U, Witzig TE, Gascoyne RD, et al. 2019; ROBUST: first report of phase III randomized study of lenalidomide/R‐CHOP (R2‐CHOP) vs placebo/R‐CHOP in previously untreated ABC‐type diffuse large B‐cell lymphoma. Hematol Oncol. 37(Suppl):36–7. DOI:
10.1002/hon.5_2629.

56. Nowakowski GS, Hong F, Scott DW, et al. 2019; Addition of lenalidomide to R-CHOP (R2CHOP) improves outcomes in newly diagnosed diffuse large B-cell lymphoma (DLBCL): first report of ECOG-ACRIN1412 a randomized phase 2 US intergroup study of R2CHOP vs R-CHOP. Hematol Oncol. 37(Suppl):37–8. DOI:
10.1002/hon.6_2629.
