2. Nicholls SJ, Tuzcu EM, Kalidindi S, Wolski K, Moon KW, Sipahi I, Schoenhagen P, Nissen SE. 2008; Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol. 52:255–262. DOI:
10.1016/j.jacc.2008.03.051. PMID:
18634979.
3. Shi Y, Vanhoutte PM. 2017; Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 9:434–449. DOI:
10.1111/1753-0407.12521. PMID:
28044409.

4. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. 2019; New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 20:247–260. DOI:
10.1016/j.redox.2018.09.025. PMID:
30384259. PMCID:
PMC6205410.

5. Kantharidis P, Wang B, Carew RM, Lan HY. 2011; Diabetes complications: the microRNA perspective. Diabetes. 60:1832–1837. DOI:
10.2337/db11-0082. PMID:
21709278. PMCID:
PMC3121430.

6. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S. 2011; miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes. 60:2975–2984. DOI:
10.2337/db11-0478. PMID:
21885871. PMCID:
PMC3198068.

7. Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R. 2016; Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 27:2277–2288. DOI:
10.1681/ASN.2015010111. PMID:
26647423. PMCID:
PMC4978034.

8. Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. 2018; Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther. 12:171–177. DOI:
10.2147/DDDT.S157109. PMID:
29398906. PMCID:
PMC5775734.

9. Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ. 2013; Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J Immunol. 190:3466–3479. DOI:
10.4049/jimmunol.1202862. PMID:
23420885.

10. Geetha R, Radika MK, Priyadarshini E, Bhavani K, Anuradha CV. 2015; Troxerutin reverses fibrotic changes in the myocardium of high-fat high-fructose diet-fed mice. Mol Cell Biochem. 407:263–279. DOI:
10.1007/s11010-015-2474-3. PMID:
26077659.

11. Zhang S, Li H, Zhang L, Li J, Wang R, Wang M. 2017; Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats. Brain Res. 1657:355–360. DOI:
10.1016/j.brainres.2016.12.009. PMID:
27998794.

12. Shu L, Zhang W, Huang G, Huang C, Zhu X, Su G, Xu J. 2019; Troxerutin attenuates myocardial cell apoptosis following myocardial ischemia-reperfusion injury through inhibition of miR-146a-5p expression. J Cell Physiol. 234:9274–9282. DOI:
10.1002/jcp.27607. PMID:
30417352.

13. Zabihi NA, Mousavi SM, Mahmoudabady M, Soukhtanloo M, Sohrabi F, Niazmand S. 2018; Teucrium polium L. improves blood glucose and lipids and ameliorates oxidative stress in heart and aorta of diabetic rats. Int J Prev Med. 9:110. DOI:
10.4103/ijpvm.IJPVM_189_17. PMID:
30687461. PMCID:
PMC6326021.

14. Najafi M, Farajnia S, Mohammadi M, Badalzadeh R, Ahmadi Asl N, Baradaran B, Amani M. 2014; Inhibition of mitochondrial permeability transition pore restores the cardioprotection by postconditioning in diabetic hearts. J Diabetes Metab Disord. 13:106. DOI:
10.1186/s40200-014-0106-1. PMID:
25436201. PMCID:
PMC4247617.

15. Sampath S, Karundevi B. 2014; Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem. 395:11–27. DOI:
10.1007/s11010-014-2107-2. PMID:
24880482.

16. Schalkwijk CG, Stehouwer CD. 2005; Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 109:143–159. DOI:
10.1042/CS20050025. PMID:
16033329.

17. Lam TY, Seto SW, Lau YM, Au LS, Kwan YW, Ngai SM, Tsui KW. 2006; Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice. Eur J Pharmacol. 546:134–141. DOI:
10.1016/j.ejphar.2006.07.003. PMID:
16904102.

18. Mohammad A, Ali N, Reza B, Ali K. 2010; Effect of ascorbic acid supplementation on nitric oxide metabolites and systolic blood pressure in rats exposed to lead. Indian J Pharmacol. 42:78–81. DOI:
10.4103/0253-7613.64501. PMID:
20711370. PMCID:
PMC2907019.

19. Das Evcimen N, King GL. 2007; The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 55:498–510. DOI:
10.1016/j.phrs.2007.04.016. PMID:
17574431.
20. Bullon P, Newman HN, Battino M. 2014; Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? Periodontol 2000. 64:139–153. DOI:
10.1111/j.1600-0757.2012.00455.x. PMID:
24320961.

21. Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. 2008; Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 28:1982–1988. DOI:
10.1161/ATVBAHA.108.169722. PMID:
18772497. PMCID:
PMC2577575.

22. Basta G, Schmidt AM, De Caterina R. 2004; Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 63:582–592. DOI:
10.1016/j.cardiores.2004.05.001. PMID:
15306213.

23. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. 2008; High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 57:3090–3098. DOI:
10.2337/db08-0564. PMID:
18650365. PMCID:
PMC2570406.

24. Patel S, Santani D. 2009; Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep. 61:595–603. DOI:
10.1016/S1734-1140(09)70111-2.
25. Yu Y, Zheng G. 2017; Troxerutin protects against diabetic cardiomyopathy through NF-κB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep. 15:3473–3478. DOI:
10.3892/mmr.2017.6456. PMID:
28440404. PMCID:
PMC5436284.

26. Zhang H, Liu J, Qu D, Wang L, Luo JY, Lau CW, Liu P, Gao Z, Tipoe GL, Lee HK, Ng CF, Ma RC, Yao X, Huang Y. 2016; Inhibition of miR-200c restores endothelial function in diabetic mice through suppression of COX-2. Diabetes. 65:1196–1207. DOI:
10.2337/db15-1067. PMID:
26822089.

27. Yang M, Ye L, Wang B, Gao J, Liu R, Hong J, Wang W, Gu W, Ning G. 2015; Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients. J Diabetes. 7:158–165. DOI:
10.1111/1753-0407.12163. PMID:
24796653.
28. García-Díaz DF, Pizarro C, Camacho-Guillén P, Codner E, Soto N, Pérez-Bravo F. 2018; Expression of miR-155, miR-146a, and miR-326 in T1D patients from Chile: relationship with autoimmunity and inflammatory markers. Arch Endocrinol Metab. 62:34–40. DOI:
10.20945/2359-3997000000006. PMID:
29694627.

29. Feng B, Chen S, Gordon AD, Chakrabarti S. 2017; miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 105:70–76. DOI:
10.1016/j.yjmcc.2017.03.002. PMID:
28279663.

30. Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Lu LF, Rudensky AY, Baltimore D. 2017; An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun. 8:851. DOI:
10.1038/s41467-017-00972-z. PMID:
29021573. PMCID:
PMC5636846.

31. Ye EA, Steinle JJ. 2016; miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm. 2016:3958453. DOI:
10.1155/2016/3958453. PMID:
26997759. PMCID:
PMC4779539.
32. Huang Y, Liu Y, Li L, Su B, Yang L, Fan W, Yin Q, Chen L, Cui T, Zhang J, Lu Y, Cheng J, Fu P, Liu F. 2014; Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 15:142. DOI:
10.1186/1471-2369-15-142. PMID:
25182190.
