1. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. 2019; Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 307:41–8. DOI:
10.1016/j.toxlet.2019.02.013. PMID:
30817977.
2. Renu K, V G A, P B TP, Arunachalam S. 2018; Molecular mechanism of doxorubicin-induced cardiomyopathy - an update. Eur J Pharmacol. 818:241–53. DOI:
10.1016/j.ejphar.2017.10.043. PMID:
29074412.
3. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. 2015; Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–38. DOI:
10.1007/s00204-015-1477-x. PMID:
25708889.
4. Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. 2018; Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. Phytomedicine. 40:125–39. DOI:
10.1016/j.phymed.2018.01.009. PMID:
29496165.
5. Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW. 2015; Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem. 290:10981–93. DOI:
10.1074/jbc.M114.607960. PMID:
25759382. PMCID:
PMC4409259.
6. Shaker RA, Abboud SH, Assad HC, Hadi N. 2018; Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol. 19:3. DOI:
10.1186/s40360-017-0184-z. PMID:
29321061. PMCID:
PMC5763526.
7. Octavia Y, Kararigas G, de Boer M, Chrifi I, Kietadisorn R, Swinnen M, Duimel H, Verheyen FK, Brandt MM, Fliegner D, Cheng C, Janssens S, Duncker DJ, Moens AL. 2017; Folic acid reduces doxorubicin-induced cardiomyopathy by modulating endothelial nitric oxide synthase. J Cell Mol Med. 21:3277–87. DOI:
10.1111/jcmm.13231. PMID:
28608983. PMCID:
PMC5706529.
8. De Angelis A, urbanek K, Cappetta D, Piegari E, Ciuffreda LP, Rivellino A, Russo R, Esposito G, Rossi F, Berrino L. 2016; Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardio-Oncology. 2:2. DOI:
10.1186/s40959-016-0012-4.
9. Lam W, Jiang Z, Guan F, Huang X, Hu R, Wang J, Bussom S, Liu SH, Zhao H, Yen Y, Cheng YC. 2015; PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep. 5:9384. DOI:
10.1038/srep09384. PMID:
25819872. PMCID:
PMC4377583.
10. Moutia M, Habti N, Badou A. 2018; In vitro and in vivo immunomodulator activities of allium sativum L. Evid Based Complementary Altern Med. 2018:4984659. DOI:
10.1155/2018/4984659. PMID:
30008785. PMCID:
PMC6020507.
11. Arreola R, Quintero-Fabián S, López-Roa RI, Flores-Gutiérrez EO, Reyes-Grajeda JP, Carrera-Quintanar L, Ortuño-Sahagún D. 2015; Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res. 2015:401630. DOI:
10.1155/2015/401630. PMID:
25961060. PMCID:
PMC4417560.
12. Wang X, Zhang M, Yang Y. 2019; The vivo antioxidant activity of self-made aged garlic extract on the d-galactose-induced mice and its mechanism research via gene chip analysis. RSC Adv. 9:3669–78. DOI:
10.1039/C8RA10308A.
13. Jeong YY, Ryu JH, Shin JH, Kang MJ, Kang JR, Han J, Kang D. 2016; Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules. 21:430. DOI:
10.3390/molecules21040430. PMID:
27043510. PMCID:
PMC6274159.
14. Nasr AY, Saleh HA. 2014; Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats. Cancer Cell Int. 14:92. DOI:
10.1186/s12935-014-0092-x. PMID:
25298749. PMCID:
PMC4189163.
15. Nasr AY. 2017; The impact of aged garlic extract on adriamycin-induced testicular changes in adult male Wistar rats. Acta Histochem. 119:648–62. DOI:
10.1016/j.acthis.2017.07.006. PMID:
28784287.
16. Zhang J, Cui L, Han X, Zhang Y, Zhang X, Chu X, Zhang F, Zhang Y, Chu L. 2017; Protective effects of tannic acid on acute doxorubicin-induced cardiotoxicity: Involvement of suppression in oxidative stress, inflammation, and apoptosis. Biomed Pharmacother. 93:1253–60. DOI:
10.1016/j.biopha.2017.07.051. PMID:
28738542.
17. Bancroft JD, Layton C. Bancroft JD, Layton C, Suvarna KS, editors. 2012. The hematoxylins and eosin. Theory and practice of histological techniques. 7th ed. Elsevier;Philadelphia: p. 172–214.
18. Hayat MA. Hayat MA, editor. 2000. Chemical Fixation. Principles and techniques of electron microscopy: biological applications. 4th ed. Cambridge University Press;Cambridge: p. 4–85.
19. Buhl SN, Jackson KY. 1978; Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate-to-pyruvate and pyruvate-to-lactate reactions in human serum at 25, 30, and 37 degrees C. Clin Chem. 24:828–31. DOI:
10.1093/clinchem/24.5.828.
20. Tietz NW, Rinker AD, Shaw LM. 1983; International Federation of Clinical Chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC document stage 2, draft 1, 1983-03 with a view to an IFCC recommendation. Clin Chim Acta. 135:339F–67F.
21. Hørder M, Elser RC, Gerhardt W, Mathieu M, Sampson EJ. 1990; International Federation of Clinical Chemistry (IFCC): scientific division, committee on enzymes. IFCC methods for the measurement of catalytic concentration of enzymes. Part 7. IFCC method for creatine kinase (ATP: creatine (N-phosphotransferase, EC 2.7.3.2). IFCC recommendation. J Automat Chem. 12:22–40. DOI:
10.1155/S1463924690000049. PMID:
18925260. PMCID:
PMC2547813.
22. Ohkawa H, Ohishi N, Yagi K. 1979; Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95:351–8. DOI:
10.1016/0003-2697(79)90738-3. PMID:
36810.
24. Sun Y, Oberley LW, Li Y. 1988; A simple method for clinical assay of superoxide dismutase. Clin Chem. 34:497–500. DOI:
10.1093/clinchem/34.3.497. PMID:
3349599.
26. Lawrence RA, Burk RF. 1976; Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 71:952–8. DOI:
10.1016/0006-291X(76)90747-6. PMID:
971321.
27. Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. 2016; Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 90:2063–76. DOI:
10.1007/s00204-016-1759-y. PMID:
27342245.
28. Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. 2019; Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods. 29:344–54. DOI:
10.1080/15376516.2018.1564948. PMID:
30636491.
29. Abdel-Daim MM, Kilany OE, Khalifa HA, Ahmed AAM. 2017; Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol. 80:745–53. DOI:
10.1007/s00280-017-3413-7. PMID:
28785995.
30. Alkreathy HM, Damanhouri ZA, Ahmed N, Slevin M, Osman AM. 2012; Mechanisms of cardioprotective effect of aged garlic extract against doxorubicin-induced cardiotoxicity. Integr Cancer Ther. 11:364–70. DOI:
10.1177/1534735411426726. PMID:
22172987.
31. Abd El-Halim SS, Mohamed MM. 2012; Garlic powder attenuates acrylamide-induced oxidative damage in multiple organs in rat. J Appl Sci Res. 8:168–73.
32. Somade OT, Adedokun AH, Adeleke IK, Taiwo MA, Oyeniran MO. 2019; Diallyl disulfide, a garlic-rich compound ameliorates trichloromethane-induced renal oxidative stress, NFkB activation and apoptosis in rats. Clin Nutr Exp. 23:44–59. DOI:
10.1016/j.yclnex.2018.10.007.
33. Wu R, Wang HL, Yu HL, Cui XH, Xu MT, Xu X, Gao JP. 2016; Doxorubicin toxicity changes myocardial energy metabolism in rats. Chem Biol Interact. 244:149–58. DOI:
10.1016/j.cbi.2015.12.010. PMID:
26721193.
34. Mantawy EM, Esmat A, El-Bakly WM, Salah ElDin RA, El-Demerdash E. 2017; Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci Rep. 7:4795. DOI:
10.1038/s41598-017-05005-9. PMID:
28684738. PMCID:
PMC5500480.
35. Takemura G, Fujiwara H. 2007; Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis. 49:330–52. DOI:
10.1016/j.pcad.2006.10.002. PMID:
17329180.
36. Lončar-Turukalo T, Vasić M, Tasić T, Mijatović G, Glumac S, Bajić D, Japunžić-Žigon N. 2015; Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol Meas. 36:727–39. DOI:
10.1088/0967-3334/36/4/727. PMID:
25798626.
38. Zhang QL, Yang JJ, Zhang HS. 2019; Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed Pharmacother. 109:71–83. DOI:
10.1016/j.biopha.2018.07.037. PMID:
30396094.
39. Halliwell B, Gutteridge J. 2007. Free radicals in biology and medicine. 4th ed. Oxford University Press;Oxford:
40. Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, Nagy AA, Mosli HA, Mohamadin AM, Ashour OM. 2010; Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol. 48:1178–84. DOI:
10.1016/j.fct.2010.02.008. PMID:
20146931.