1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018; 138:271–81.

2. Won JC, Lee JH, Kim JH, Kang ES, Won KC, Kim DJ, Lee MK. Diabetes fact sheet in Korea, 2016: an appraisal of current status. Diabetes Metab J. 2018; 42:415–24.

3. Steinhubl SR, Topol EJ. Digital medicine, on its way to being just plain medicine. NPJ Digit Med. 2018; 1:20175.

4. Sharma A, Harrington RA, McClellan MB, Turakhia MP, Eapen ZJ, Steinhubl S, Mault JR, Majmudar MD, Roessig L, Chandross KJ, Green EM, Patel B, Hamer A, Olgin J, Rumsfeld JS, Roe MT, Peterson ED. Using digital health technology to better generate evidence and deliver evidence-based care. J Am Coll Cardiol. 2018; 71:2680–90.
5. Ricciardi W, Pita Barros P, Bourek A, Brouwer W, Kelsey T, Lehtonen L. Expert Panel on Effective Ways of Investing in Health (EXPH). How to govern the digital transformation of health services. Eur J Public Health. 2019; 29:7–12.

7. Neborachko M, Pkhakadze A, Vlasenko I. Current trends of digital solutions for diabetes management. Diabetes Metab Syndr. 2019; 13:2997–3003.

8. Chin SO, Keum C, Woo J, Park J, Choi HJ, Woo JT, Rhee SY. Successful weight reduction and maintenance by using a smartphone application in those with overweight and obesity. Sci Rep. 2016; 6:34563.

9. Tremmel M, Gerdtham UG, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017; 14:435.

10. Arigo D, Jake-Schoffman DE, Wolin K, Beckjord E, Hekler EB, Pagoto SL. The history and future of digital health in the field of behavioral medicine. J Behav Med. 2019; 42:67–83.

11. McConnell MV, Shcherbina A, Pavlovic A, Homburger JR, Goldfeder RL, Waggot D, Cho MK, Rosenberger ME, Haskell WL, Myers J, Champagne MA, Mignot E, Landray M, Tarassenko L, Harrington RA, Yeung AC, Ashley EA. Feasibility of obtaining measures of lifestyle from a smartphone app: the myheart counts cardiovascular health study. JAMA Cardiol. 2017; 2:67–76.
12. Nelson BW, Allen NB. Accuracy of consumer wearable heart rate measurement during an ecologically valid 24-hour period: intraindividual validation study. JMIR Mhealth Uhealth. 2019; 7:e10828.

13. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, Talati N, Nag D, Gummidipundi SE, Beatty A, Hills MT, Desai S, Granger CB, Desai M, Turakhia MP. Apple Heart Study Investigators. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019; 381:1909–17.

14. Liang Z, Chapa-Martell MA. Accuracy of fitbit wristbands in measuring sleep stage transitions and the effect of user-specific factors. JMIR Mhealth Uhealth. 2019; 7:e13384.

15. Davison BK, Quigg R, Skidmore PML. Pilot testing a photo-based food diary in nine-to twelve-year old-children from Dunedin, New Zealand. Nutrients. 2018; 10:240.
16. Fuller NR, Fong M, Gerofi J, Ferkh F, Leung C, Leung L, Zhang S, Skilton M, Caterson ID. Comparison of an electronic versus traditional food diary for assessing dietary intake: a validation study. Obes Res Clin Pract. 2017; 11:647–54.
17. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalova L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell. 2015; 163:1079–94.

18. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018; 361:k2179.

19. Boerger NL, Barleen NA, Marzec ML, Moloney DP, Dobro J. The impact of specialized telephonic guides on employee engagement in corporate well-being programs. Popul Health Manag. 2018; 21:32–9.

20. Levinson CA, Fewell L, Brosof LC. My fitness pal calorie tracker usage in the eating disorders. Eat Behav. 2017; 27:14–6.

21. Shin DW, Yun JM, Shin JH, Kwon H, Min HY, Joh HK, Chung WJ, Park JH, Jung KT, Cho B. Enhancing physical activity and reducing obesity through smartcare and financial incentives: a pilot randomized trial. Obesity (Silver Spring). 2017; 25:302–10.

22. Mahmood A, Kedia S, Wyant DK, Ahn S, Bhuyan SS. Use of mobile health applications for health-promoting behavior among individuals with chronic medical conditions. Digit Health. 2019; 5:2055207619882181.

23. Moin T, Damschroder LJ, AuYoung M, Maciejewski ML, Havens K, Ertl K, Vasti E, Weinreb JE, Steinle NI, Billington CJ, Hughes M, Makki F, Youles B, Holleman RG, Kim HM, Kinsinger LS, Richardson CR. Results from a trial of an online diabetes prevention program intervention. Am J Prev Med. 2018; 55:583–91.

24. Jasik CB, Joy E, Brunisholz KD, Kirley K. Practical tips for implementing the diabetes prevention program in clinical practice. Curr Diab Rep. 2018; 18:70.

25. Mosst JT, DeFosset A, Sivashanmugam M, Kuo T. Exploring reimbursement options for the national diabetes prevention program: lessons learned from a pilot project in Los Angeles, 2014–2018. J Public Health Manag Pract. 2020. Jan. 30. [Epub].
https://doi.org/10.1097/PHH.0000000000001136
.

26. Cha SA, Lim SY, Kim KR, Lee EY, Kang B, Choi YH, Yoon KH, Ahn YB, Lee JH, Ko SH. Community-based randomized controlled trial of diabetes prevention study for high-risk individuals of type 2 diabetes: lifestyle intervention using web-based system. BMC Public Health. 2017; 17:387.

27. Norris SL, Engelgau MM, Narayan KM. Effectiveness of self-management training in type 2 diabetes: a systematic review of randomized controlled trials. Diabetes Care. 2001; 24:561–87.

28. Greenwood DA, Gee PM, Fatkin KJ, Peeples M. A systematic review of reviews evaluating technology-enabled diabetes self-management education and support. J Diabetes Sci Technol. 2017; 11:1015–27.

29. Mierzwa S, Souidi S, Conroy T, Abusyed M, Watarai H, Allen T. On the potential, feasibility, and effectiveness of chat bots in public health research going forward. Online J Public Health Inform. 2019; 11:e4.

30. Rhee SY, Han SW, Woo JT. Artificial pancreas: a concise review. J Korean Diabetes. 2017; 18:141–9.

31. Voelker R. “Artificial pancreas” is approved. JAMA. 2016; 316:1957.

32. DeVries JH. The artificial pancreas-ready for prime time? Lancet Diabetes Endocrinol. 2017; 5:238–9.

33. Kim J, Sempionatto JR, Imani S, Hartel MC, Barfidokht A, Tang G, Campbell AS, Mercier PP, Wang J. Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform. Adv Sci (Weinh). 2018; 5:1800880.

34. Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, Na K, Kim YT, Heo JH, Lee CY, Lee JH, Bien F, Park JU. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. 2018; 4:eaap9841.

35. Huang Z, Tan E, Lum E, Sloot P, Boehm BO, Car J. A smartphone app to improve medication adherence in patients with type 2 diabetes in Asia: feasibility randomized controlled trial. JMIR Mhealth Uhealth. 2019; 7:e14914.

36. Peters-Strickland T, Pestreich L, Hatch A, Rohatagi S, Baker RA, Docherty JP, Markovtsova L, Raja P, Weiden PJ, Walling DP. Usability of a novel digital medicine system in adults with schizophrenia treated with sensor-embedded tablets of aripiprazole. Neuropsychiatr Dis Treat. 2016; 12:2587–94.

37. Eiland L, McLarney M, Thangavelu T, Drincic A. App-based insulin calculators: current and future state. Curr Diab Rep. 2018; 18:123.

38. Klonoff DC, Kerr D. Smart pens will improve insulin therapy. J Diabetes Sci Technol. 2018; 12:551–3.

39. Shanmugam MP, Mishra DK, Madhukumar R, Ramanjulu R, Reddy SY, Rodrigues G. Fundus imaging with a mobile phone: a review of techniques. Indian J Ophthalmol. 2014; 62:960–2.

40. Rajalakshmi R, Arulmalar S, Usha M, Prathiba V, Kareemuddin KS, Anjana RM, Mohan V. Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS One. 2015; 10:e0138285.

41. Basatneh R, Najafi B, Armstrong DG. Health sensors, smart home devices, and the internet of medical things: an opportunity for dramatic improvement in care for the lower extremity complications of diabetes. J Diabetes Sci Technol. 2018; 12:577–86.

42. Habib MA, Mohktar MS, Kamaruzzaman SB, Lim KS, Pin TM, Ibrahim F. Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors (Basel). 2014; 14:7181–208.

43. Rushakoff RJ, Sullivan MM, MacMaster HW, Shah AD, Rajkomar A, Glidden DV, Kohn MA. Association between a virtual glucose management service and glycemic control in hospitalized adult patients: an observational study. Ann Intern Med. 2017; 166:621–7.
44. Shan R, Sarkar S, Martin SS. Digital health technology and mobile devices for the management of diabetes mellitus: state of the art. Diabetologia. 2019; 62:877–87.

45. Kumar RB, Goren ND, Stark DE, Wall DP, Longhurst CA. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology. J Am Med Inform Assoc. 2016; 23:532–7.

46. Castro Sweet CM, Chiguluri V, Gumpina R, Abbott P, Madero EN, Payne M, Happe L, Matanich R, Renda A, Prewitt T. Outcomes of a digital health program with human coaching for diabetes risk reduction in a medicare population. J Aging Health. 2018; 30:692–710.

47. Michaelides A, Raby C, Wood M, Farr K, Toro-Ramos T. Weight loss efficacy of a novel mobile diabetes prevention program delivery platform with human coaching. BMJ Open Diabetes Res Care. 2016; 4:e000264.

48. Jardine J, Fisher J, Carrick B. Apple’s ResearchKit: smart data collection for the smartphone era? J R Soc Med. 2015; 108:294–6.

49. Bot BM, Suver C, Neto EC, Kellen M, Klein A, Bare C, Doerr M, Pratap A, Wilbanks J, Dorsey ER, Friend SH, Trister AD. The mPower study, Parkinson disease mobile data collected using ResearchKit. Sci Data. 2016; 3:160011.

50. Egger HL, Dawson G, Hashemi J, Carpenter KLH, Espinosa S, Campbell K, Brotkin S, Schaich-Borg J, Qiu Q, Tepper M, Baker JP, Bloomfield RA Jr, Sapiro G. Automatic emotion and attention analysis of young children at home: a ResearchKit autism feasibility study. NPJ Digit Med. 2018; 1:20.

51. Yamaguchi S, Waki K, Nannya Y, Nangaku M, Kadowaki T, Ohe K. Usage patterns of gluconote, a self-management smartphone app, based on ResearchKit for patients with type 2 diabetes and prediabetes. JMIR Mhealth Uhealth. 2019; 7:e13204.

52. Baca-Motes K, Edwards AM, Waalen J, Edmonds S, Mehta RR, Ariniello L, Ebner GS, Talantov D, Fastenau JM, Carter CT, Sarich TC, Felicione E, Topol EJ, Steinhubl SR. Digital recruitment and enrollment in a remote nationwide trial of screening for undiagnosed atrial fibrillation: lessons from the randomized, controlled mSToPS trial. Contemp Clin Trials Commun. 2019; 14:100318.

53. Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, Mehta RR, Ebner GS, Carter C, Baca-Motes K, Felicione E, Sarich T, Topol EJ. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS randomized clinical trial. JAMA. 2018; 320:146–55.
54. Izmailova ES, Wagner JA, Perakslis ED. Wearable devices in clinical trials: hype and hypothesis. Clin Pharmacol Ther. 2018; 104:42–52.

55. Lee TT, Kesselheim AS. U.S. Food and drug administration precertification pilot program for digital health software: weighing the benefits and risks. Ann Intern Med. 2018; 168:730–2.

57. Frieden TR. Evidence for health decision making: beyond randomized, controlled trials. N Engl J Med. 2017; 377:465–75.
58. Kim JA, Yoon S, Kim LY, Kim DS. Towards actualizing the value potential of Korea Health Insurance Review and Assessment (HIRA) data as a resource for health research: strengths, limitations, applications, and strategies for optimal use of HIRA data. J Korean Med Sci. 2017; 32:718–28.

59. Park SY, Jeong SJ, Ustulin M, Chon S, Woo JT, Lim JE, Oh B, Rhee SY. Incidence of diabetes mellitus in male moderate alcohol drinkers: a community-based prospective cohort study. Arch Med Res. 2019; 50:315–23.
60. Keesara S, Jonas A, Schulman K. Covid-19 and health care’s digital revolution. N Engl J Med. 2020; 382:e82.

61. Bradley WG, Golding SG, Herold CJ, Hricak H, Krestin GP, Lewin JS, Miller JC, Ringertz HG, Thrall JH. Globalization of P4 medicine: predictive, personalized, preemptive, and participatory: summary of the proceedings of the Eighth International Symposium of the International Society for Strategic Studies in Radiology, August 27–29, 2009. Radiology. 2011; 258:571–82.