Journal List > J Vet Sci > v.21(2) > 1144496

Dao, Truong, Do, and Hahn: Construction and immunization with double mutant Δ apxIBD Δ pnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

Abstract

Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1Δ apxIBDΔ pnp and APP5Δ apxIBDΔ pnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1Δ apxIBDΔ pnp and APP5Δ apxIBDΔ pnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5Δ apxIBDΔ pnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1Δ apxIBDΔ pnp offered 75% protection against a homologous challenge. The Δ apxIBDΔ pnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

References

1. Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis. 2018; 65(Suppl 1):72–90.
crossref
2. Bossé JT, Li Y, Sárközi R, Fodor L, Lacouture S, Gottschalk M, Casas Amoribieta M, Angen Ø, Nedbalcova K, Holden MT, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. BRaDP1T consortium. Proposal of serovars 17 and 18 of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Vet Microbiol. 2018; 217:1–6.
crossref
3. Lee KE, Choi HW, Kim HH, Song JY, Yang DK. Prevalence and characterization of Actinobacillus pleuropneumoniae isolated from Korean pigs. J Bacteriol Virol. 2015; 45:19–25.
crossref
4. Komal JP, Mittal KR. Grouping of Actinobacillus pleuropneumoniae strains of serotypes 1 through 12 on the basis of their virulence in mice. Vet Microbiol. 1990; 25:229–240.
crossref
5. Yuan F, Liu J, Guo Y, Tan C, Fu S, Zhao J, Chen H, Bei W. Influences of ORF1 on the virulence and immunogenicity of Actinobacillus pleuropneumoniae. Curr Microbiol. 2011; 63:574–580.
crossref
6. Frey J. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol. 1995; 3:257–261.
7. Jansen R, Briaire J, Kamp EM, Gielkens AL, Smits MA. Structural analysis of the Actinobacillus pleuropneumoniae-RTX-toxin I (ApxI) operon. Infect Immun. 1993; 61:3688–3695.
crossref
8. Jones GH. Novel aspects of polynucleotide phosphorylase function in Streptomyces. Antibiotics (Basel). 2018; 7:25.
9. Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology. 2013; 159:2437–2443.
crossref
10. Rosenzweig JA, Chopra AK. The exoribonuclease polynucleotide phosphorylase influences the virulence and stress responses of yersiniae and many other pathogens. Front Cell Infect Microbiol. 2013; 3:81.
crossref
11. De Lay N, Gottesman S. Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA. 2011; 17:1172–1189.
crossref
12. Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet. 2018; 14:e1007654.
crossref
13. Fuller TE, Kennedy MJ, Lowery DE. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog. 2000; 29:25–38.
crossref
14. Engman J, Negrea A, Sigurlásdóttir S, Geörg M, Eriksson J, Eriksson OS, Kuwae A, Sjölinder H, Jonsson AB. Neisseria meningitidis polynucleotide phosphorylase affects aggregation, adhesion, and virulence. Infect Immun. 2016; 84:1501–1513.
crossref
15. Fuller TE, Martin S, Teel JF, Alaniz GR, Kennedy MJ, Lowery DE. Identification of Actinobacillus pleuropneumoniae virulence genes using signature-tagged mutagenesis in a swine infection model. Microb Pathog. 2000; 29:39–51.
crossref
16. Oswald W, Tonpitak W, Ohrt G, Gerlach G. A single-step transconjugation system for the introduction of unmarked deletions into Actinobacillus pleuropneumoniae serotype 7 using a sucrose sensitivity marker. FEMS Microbiol Lett. 1999; 179:153–160.
crossref
17. Lin L, Bei W, Sha Y, Liu J, Guo Y, Liu W, Tu S, He Q, Chen H. Construction and immunogencity of a ΔapxICapxIIC double mutant of Actinobacillus pleuropneumoniae serovar 1. FEMS Microbiol Lett. 2007; 274:55–62.
crossref
18. Hu J, McCormick RJ, Means WJ, Zhu MJ. Polynucleotide phosphorylase is required for Escherichia coli O157: H7 growth above refrigerated temperature. Foodborne Pathog Dis. 2014; 11:177–185.
crossref
19. Nielsen R, van den Bosch JF, Plambeck T, Sørensen V, Nielsen JP. Evaluation of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to the Apx toxins of Actinobacillus pleuropneumoniae. Vet Microbiol. 2000; 71:81–87.
crossref
20. Xu F, Chen X, Shi A, Yang B, Wang J, Li Y, Guo X, Blackall PJ, Yang H. Characterization and immunogenicity of an apxIA mutant of Actinobacillus pleuropneumoniae. Vet Microbiol. 2006; 118:230–239.
crossref
21. Bei W, He Q, Yan L, Fang L, Tan Y, Xiao S, Zhou R, Jin M, Guo A, Lv J, Huang H, Chen H. Construction and characterization of a live, attenuated apxIICA inactivation mutant of Actinobacillus pleuropneumoniae lacking a drug resistance marker. FEMS Microbiol Lett. 2005; 243:21–27.
crossref
22. Liu J, Chen X, Lin L, Tan C, Chen Y, Guo Y, Jin M, Guo A, Bei W, Chen H. Potential use an Actinobacillus pleuropneumoniae double mutant strain ΔapxIICΔapxIVA as live vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine. 2007; 25:7696–7705.
crossref
23. Seah JN, Frey J, Kwang J. The N-terminal domain of RTX toxin ApxI of Actinobacillus pleuropneumoniae elicits protective immunity in mice. Infect Immun. 2002; 70:6464–6467.
crossref
24. Frey J. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol. 2011; 153:51–58.
crossref
25. Ramjeet M, Deslandes V, Gouré J, Jacques M. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim Health Res Rev. 2008; 9:25–45.
crossref
26. Yuan F, Liao Y, You W, Liu Z, Tan Y, Zheng C, Wang Bin, Zhou D, Tian Y, Bei W. Deletion of the znuA virulence factor attenuates Actinobacillus pleuropneumoniae and confers protection against homologous or heterologous strain challenge. Vet Microbiol. 2014; 174:531–539.
crossref
27. Xie F, Li G, Zhou L, Zhang Y, Cui N, Liu S, Wang C. Attenuated Actinobacillus pleuropneumoniae double-deletion mutant S-8∆clpP/apxIIC confers protection against homologous or heterologous strain challenge. BMC Vet Res. 2017; 13:14.
28. Wang L, Qin W, Yang S, Zhai R, Zhou L, Sun C, Pan F, Ji Q, Wang Y, Gu J, Feng X, Du C, Han W, Langford PR, Lei L. The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. Vet Microbiol. 2015; 177:175–183.
crossref
29. Fu S, Ou J, Zhang M, Xu J, Liu H, Liu J, Yuan F, Chen H, Bei W. The live attenuated Actinobacillus pleuropneumoniae triple-deletion mutant ΔapxIC ΔapxIIC ΔapxIV-ORF1 strain, SLW05, Immunizes pigs against lethal challenge with Haemophilus parasuis. Clin Vaccine Immunol. 2013; 20:134–139.
crossref
30. Chiers K, De Waele T, Pasmans F, Ducatelle R, Haesebrouck F. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res. 2010; 41:65.
crossref
31. Park C, Ha Y, Kim S, Chae C, Ryu DY. Construction and characterization of an Actinobacillus pleuropneumoniae serotype 2 mutant lacking the Apx toxin secretion protein genes apxIIIB and apxIIID. J Vet Med Sci. 2009; 71:1317–1323.
crossref
32. Bao CT, Xiao JM, Liu BJ, Liu JF, Zhu RN, Jiang P, Li L, Langford PR, Lei LC. Establishment and comparison of Actinobacillus pleuropneumoniae experimental infection model in mice and piglets. Microb Pathog. 2019; 128:381–389.
crossref
33. Li Y, Cao S, Zhang L, Yuan J, Zhao Q, Wen Y, Wu R, Huang X, Yan Q, Huang Y, Ma X, Han X, Miao C, Wen X. A requirement of TolC1 for effective survival, colonization and pathogenicity of Actinobacillus pleuropneumoniae. Microb Pathog. 2019; 134:103596.
34. Li T, Zhang Q, Wang R, Zhang S, Pei J, Li Y, Li L, Zhou R. The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity. Microb Pathog. 2019; 126:310–317.
crossref
35. Loera-Muro A, Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet Microbiol. 2018; 217:66–75.
crossref
36. Inzana TJ, Todd J, Ma JN, Veit H. Characterization of a non-hemolytic mutant of Actinobacillus pleuropneumoniae serotype 5: role of the 110 kilodalton hemolysin in virulence and immunoprotection. Microb Pathog. 1991; 10:281–296.
crossref
37. Dehio C, Meyer M. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli. J Bacteriol. 1997; 179:538–540.
crossref
38. Baltes N, Tonpitak W, Hennig-Pauka I, Gruber AD, Gerlach GF. Actinobacillus pleuropneumoniae serotype 7 siderophore receptor FhuA is not required for virulence. FEMS Microbiol Lett. 2003; 220:41–48.
crossref

Fig. 1.
PCR analysis of the wild-type and apxIBD, pnp-deleted mutant of APP1 (A) and APP5 (B) using primer pairs P5–P6 and P11–P12. Lane M, DNA molecular weight ladder 1 kb; lane 1, negative control; lane 2, apxIBD gene amplified from genomic DNA of wild-type APP; lane 3, apxIBD gene amplified from genomic DNA of the Δ apxIBDΔ pnp mutant; lane 4, pnp gene amplified from genomic DNA of the wild-type APP; lane 5, pnp gene amplified from genomic DNA of Δ apxIBDΔ pnp mutant. PCR, polymerase chain reaction; APP, Actinobacillus pleuropneumoniae.
jvs-21-e20f1.tif
Fig. 2.
Phenotypes of the APP mutants. Hemolytic activity of wild-type and mutants of APP1 (A) and APP5 (B). The black arrow indicates the clear zone caused by the hemolytic activity surrounding bacteria on blood agar. Cold shock adaptive ability of wild-type and mutant APP1 (C) and APP5 (D). Open arrow indicates colony growth on BHI agar containing a final amount of 10 µg/mL NAD. APP, Actinobacillus pleuropneumoniae; BHI, brain heart infusion; NAD, nicotinamide adenine dinucleotide.
jvs-21-e20f2.tif
Fig. 3.
Growth curves of wild-type and mutants of APP1 (A) and APP5 (B). Symbols: ο, wild-type APP; ▲, mutant APP Δ apxIBDΔ pnp. APP, Actinobacillus pleuropneumoniae; OD600, optical density at 600 nm.
jvs-21-e20f3.tif
Fig. 4.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of Apx toxins in wild-type and the mutants of APP1 (A) and APP5 (B). Lane M, Xpert Prestained Protein marker; lane 1, culture supernatant of the wild-type APP before precipitating; lane 2, culture supernatant of the mutants before precipitating; lane 3, RTX toxins of wild-type after precipitating with ammonium sulfate; lane 4, RTX toxins of the mutants after precipitating with ammonium sulfate. APP, Actinobacillus pleuropneumoniae; RTX, repeats in toxin.
jvs-21-e20f4.tif
Fig. 5.
Evaluation of the stability deletion gene in the genome of APP1Δ apxIBDΔ pnp and APP5Δ apxIBDΔ pnp over 10 passages by PCR using primer pairs P5–P6 and P11–P12 for amplifying apxIBD and pnp genes, respectively. Amplified apxIBD gene (A) and pnp gene (B) from APP1Δ apxIBDΔ pnp. Amplified apxIBD gene (C) and pnp gene (D) from APP5Δ apxIBDΔ pnp. Lane M, DNA Ladder 1kb; lane 1, negative control; lane 2, target gene amplified from genomic DNA of wild-type APP, lanes 3–12, deletion gene amplified from genome DNA of mutant through 10 continuous passages. APP, Actinobacillus pleuropneumoniae; PCR, polymerase chain reaction.
jvs-21-e20f5.tif
Table 1.
Bacterial strains used in this study
Strain Relevant characteristics Source
Escherichia coli    
DH5α Cloning vehicle: supE44 Δ lacU169 (ϕ80 lacZΔ M15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Invitrogen
WM3064 Donor strain for conjugation; thrB1004 pro thi rpsL hsdS lacZΔ M15 [37]
  RP4–360_(araBAD)567_ dapA1341::_ erm pir(wt)_  
Actinobacillus    
pleuropneumoniae    
APP1 Serovar 1, an isolate from infected pig in Korea This study
APP5 Serovar 5, an isolate from infected pig in Korea This study
APP1Δ apxIBDΔ pnp Mutation in apxIBD and pnp gene of APP1 This study
APP5Δ apxIBDΔ pnp Mutation in apxIBD and pnp gene of APP5 This study
APP1Δ apxIBD Mutation in apxIBD of APP1 This study
APP5Δ apxIBD Mutation in apxIBD of APP5 This study
APP1Δ pnp Mutation in pnp gene of APP1 This study
APP5Δ pnp Mutation in pnp gene of APP5 This study

APP, Actinobacillus pleuropneumoniae.

Table 2.
Plasmid and primers used in this study
Plasmids, primers Characteristics Source
Plasmids
pBluescriptII SK(+) E. coli cloning vector carrying an ampicillin resistance determinant Stratagene
pEMOC2 Transconjugation vector: ColE1 ori mob RP4 sacB, Amp r Cam r [38]
pEMOC2Δ apxIBD pEMOC2 including the truncated apxIBD This study
pEMOC2Δ pnp pEMOC2 including the truncated pnp This study
Primers for constructing APP1Δ apxIBDΔ pnp
P1-F 5′-ACGCGTCGACCGTTCTCTTAAACTCTCCG-3′ (Sal I site underlined) Amplified an upstream sequence of apxIB (892 bp) in APP1
P2-R 5′-CGGGATCCCGCTATTTGATCACCGAGC-3′ (Bam HI underlined)  
P3-F 5′-CGGGATCCCGAGGATTATGCGTTTCCAA-3′ (Bam HI site underlined) Amplified a downstream sequence of apxID (1,003 bp) in APP1
P4-R 5′-ATGCGCGGCCGCGACGGTGGTGTAGGCAATG-3′ (Not I underlined)  
P5-F 5′-GCCAACTCATTTACCGCTT-3′ Amplified 3,759 bp in parent and 1,389 bp in mutant. These
P6-R 5′-GGTAACGGAAACGACCGAT-3′ primers were used to confirm the deletion of apxIBD in APP1
P7-F 5′-ATACGTCGACGCCATAACGCTCGGTACG-3′ (Sal I site underlined) Amplified an upstream sequence of pnp (1,052 bp) in APP1
P8-R 5′-CATTAATCGGGATCCCGTAAAGGTGGTGCGGTAAT-3′ (Bam HI site underlined)  
P9-F 5′-CGGGATCCCGACCTTCACGTTTGAAGA-3′ (Bam HI site underlined) Amplified a downstream sequence of pnp (1,142 bp) in APP1
P10-R 5′-ATGCGCGGCCGCACATCACGCTTGCTTCGG-3′ (Not I site underlined)  
P11-F 5′-CATTTGTGCCCCAGAACTCA-3′ Amplified 3,885 bp in parent and 2,423 bp in mutant. These
P12-R 5′-ATTGAGCCTTTGCCTTGCTC-3′ primers were used to confirm the deletion of pnp in APP1
Primers for constructing APP5Δ apxIBDΔ pnp
P1-F 5′-ACGCGTCGACACTTTGGTTGAAAGGCTAT-3′ (Sal I site underlined) Amplified an upstream sequence of apxIB in APP5 (922 bp)
P2-R 5′-CGTTACCGGGATCCCGGTACGGTTCAGCAACTT-3′ (Bam HI underlined d)
P3-F 5′-ACCGTACCGGGATCCCGGTAACGAGCCTAAAAT-3′ (Bam HI site underlined) Amplified a downstream sequence of apxID in APP5 (922 bp)
P4-R 5′-ATGCGCGGCCGCTCGGGAAGAAGACTACGG-3′ (Not I site underlined )
P5-F 5′-GCCTGCCATCACAGGTAA-3′ Amplified 4,308 bp in parent and 2,080 bp in mutant. These
P6-R 5′-CGGTCCATTAGCTTACAGC-3′ primers were used to confirm the deletion of apxIBD in APP5
P7-F 5′-ACGCGTCGACGCCATAACGCTCGGTACG-3′ (Sal I site underlined) Amplified an upstream sequence of pnp in APP5 (1,077 bp)
P8-R 5′-CATTAATCGGGATCCCGTAAAGGTGGTGCGGTAAT-3′ (Bam HI underlined)  
P9-F 5′-CACCTTTACGGGATCCCGGATTAATGTTTCGCCTTC-3′ (Bam HI site underlined) Amplified a downstream sequence of pnp in APP5 (1,171 bp)
P10-R 5′-ATGCGCGGCCGCCGTTGATATTGTGCGGCG-3′ (Not I site underlined)  
P11-F 5′-CGTTTCGGCACGCTTAAT-3′ Amplified 3,828 bp in parent and 2,393 bp in mutant. These
P12-R 5′-GGCAATATCGGCTTTAGGG-3′ primers were used to confirm the deletion of pnp in APP5
Table 3.
Virulence of the wild-type and mutant of APP in mice*
Strain tested LD50† (CFU) Fold attenuation
APP1 wild-type 1.6 × 106 1
APP1Δ apxIBD 6.3 × 107 39
APP1Δ pnp 4.4 × 106 3
APP1Δ apxIBDΔ pnp 1.5 × 108 93
APP5 wild-type 6.5 × 106 1
APP5Δ apxIBD 1.4 × 108 21
APP5Δ pnp 1.6 × 107 2
APP5Δ apxIBDΔ pnp 3.1 × 108 48

APP, Actinobacillus pleuropneumoniae; LD50, 50% lethal dose; CFU, colony-forming unit.

* Groups of five mice were injected intraperitoneally with 200 mL of bacterial suspension containing various doses of APP. The numbers of surviving mice were recorded 10 days after inoculation.

LD50 was calculated by the Reed-Muench method;

Fold attenuation was normalized to the wild-type APP.

Table 4.
Protection of mice immunized with APP1 and APP5 mutants challenged with homologous and heterologous serotypes of APP*
Group Injection dose (CFU) Challenge (10 × LD50) Number of survival/number of tested (%)
APP1Δ apxIBDΔ pnp 1 × 107 APP1 6/8 (75%)
    APP5 0/8 (0%)
APP5Δ apxIBDΔ pnp 1 × 107 APP1 0/8 (0%)
    APP5 0/8 (0%)
Control TSB APP1 0/8 (0%)
    APP5 0/8 (0%)

APP, Actinobacillus pleuropneumoniae; CFU, colony-forming unit; LD50, 50% lethal dose.

* Mice were immunized twice intraperitoneally with the mutant or culture media (controls) and challenged at 2 weeks after vaccination with homologous or heterologous virulent strains. Surviving mice were recorded at 10 days after challenge.

TOOLS
Similar articles