1. Mosaad YM. Clinical role of human leukocyte antigen in health and disease. Scand J Immunol. 2015; 82(4):283–306. PMID:
26099424.
2. Morishima Y, Sasazuki T, Inoko H, Juji T, Akaza T, Yamamoto K, et al. The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood. 2002; 99(11):4200–4206. PMID:
12010826.
3. Hernandez-Boussard T, Kourdis PD, Seto T, Ferrari M, Blayney DW, Rubin D, et al. Mining electronic health records to extract patient-centered outcomes following prostate cancer treatment. AMIA Annu Symp Proc. 2018; 2017:876–882. PMID:
29854154.
4. Juhn YJ, Kita H, Lee LA, Smith RW, Bagniewski SM, Weaver AL, et al. Childhood asthma and human leukocyte antigen type. Tissue Antigens. 2007; 69(1):38–46. PMID:
17212706.
5. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens. 2004; 64(6):631–649. PMID:
15546336.
6. Williams TM. Human leukocyte antigen gene polymorphism and the histocompatibility laboratory. J Mol Diagn. 2001; 3(3):98–104. PMID:
11486048.
7. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007; 48(1):11–23. PMID:
17326240.
8. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012; 13(6):395–405. PMID:
22549152.
9. Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, et al. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review. J Biomed Inform. 2017; 73:14–29. PMID:
28729030.
11. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2018; 77:34–49. PMID:
29162496.
12. Rosier A, Burgun A, Mabo P. Using regular expressions to extract information on pacemaker implantation procedures from clinical reports. AMIA Annu Symp Proc. 2008; 2008:81–85.
13. Aggarwal A, Garhwal S, Kumar A. HEDEA: a Python tool for extracting and analysing semi-structured information from medical records. Healthc Inform Res. 2018; 24(2):148–153. PMID:
29770248.
14. Denny JC. Chapter 13: Mining electronic health records in the genomics era. PLOS Comput Biol. 2012; 8(12):e1002823. PMID:
23300414.
15. McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, Larson EB, et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med Genomics. 2011; 4(1):13. PMID:
21269473.
16. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015; 43(D1):D423–31. PMID:
25414341.
17. Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens. 2010; 75(4):291–455. PMID:
20356336.
19. Sun W, Cai Z, Li Y, Liu F, Fang S, Wang G. Data processing and text mining technologies on electronic medical records: a review. J Healthc Eng. 2018; 2018:4302425. PMID:
29849998.
20. Scholte M, van Dulmen SA, Neeleman-Van der Steen CW, van der Wees PJ, Nijhuis-van der Sanden MW, Braspenning J. Data extraction from electronic health records (EHRs) for quality measurement of the physical therapy process: comparison between EHR data and survey data. BMC Med Inform Decis Mak. 2016; 16(1):141. PMID:
27825333.
21. Turchin A, Kolatkar NS, Grant RW, Makhni EC, Pendergrass ML, Einbinder JS. Using regular expressions to abstract blood pressure and treatment intensification information from the text of physician notes. J Am Med Inform Assoc. 2006; 13(6):691–695. PMID:
16929043.
22. Shin SY, Park YR, Shin Y, Choi HJ, Park J, Lyu Y, et al. A De-identification method for bilingual clinical texts of various note types. J Korean Med Sci. 2015; 30(1):7–15. PMID:
25552878.